Your browser doesn't support javascript.
loading
In Situ Monitoring of Hydrogen Peroxide Released from Living Cells Using a ZIF-8-Based Surface-Enhanced Raman Scattering Sensor.
Jiang, Lei; He, Cai-Hong; Chen, Hua-Ying; Xi, Cheng-Ye; Fodjo, Essy Kouadio; Zhou, Ze-Rui; Qian, Ruo-Can; Li, Da-Wei; Hafez, Mahmoud Elsayed.
Afiliação
  • Jiang L; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
  • He CH; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
  • Chen HY; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
  • Xi CY; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
  • Fodjo EK; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
  • Zhou ZR; Laboratory of Physical Chemistry, Felix Houphouet Boigny University, Abidjan 225, Cote d'Ivoire.
  • Qian RC; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
  • Li DW; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
  • Hafez ME; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
Anal Chem ; 93(37): 12609-12616, 2021 09 21.
Article em En | MEDLINE | ID: mdl-34498868
Hydrogen peroxide (H2O2) widely involves in intracellular and intercellular redox signaling pathways, playing a vital role in regulating various physiological events. Nevertheless, current analytical methods for the H2O2 assay are often hindered by relatively long response time, low sensitivity, or self-interference. Herein, a zeolitic imidazolate framework-8 (ZIF-8)-based surface-enhanced Raman scattering (SERS) sensor has been developed to detect H2O2 released from living cells by depositing ZIF-8 over SERS active gold nanoparticles (AuNPs) grafted with H2O2-responsive probe molecules, 2-mercaptohydroquinone. Combining the superior fingerprint identification of SERS and the highly efficient enrichment and selective response of H2O2 by ZIF, the ZIF-8-based SERS sensor exhibits a high anti-interference ability for H2O2 detection, with a limit of detection as low as 0.357 nM. Satisfyingly, owing to the enhanced catalytic activity derived from the successful integration of AuNPs and ZIF, the response time as short as 1 min can be obtained, demonstrating the effectiveness of the SERS sensor for rapid H2O2 detection. Furthermore, the developed SERS sensor enables real-time detection of H2O2 secreted from living cells under phorbol myristate acetate stimulation, as cells can be cultured on-chip. This study will pave the way toward the development of a metal-organic framework-based SERS platform for application in the fields of biosensing and early disease diagnosis associated with H2O2 secretion, thus exhibiting promising potential for future therapies.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Zeolitas / Nanopartículas Metálicas Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Zeolitas / Nanopartículas Metálicas Idioma: En Ano de publicação: 2021 Tipo de documento: Article