Your browser doesn't support javascript.
loading
Anatomical-guided attention enhances unsupervised PET image denoising performance.
Onishi, Yuya; Hashimoto, Fumio; Ote, Kibo; Ohba, Hiroyuki; Ota, Ryosuke; Yoshikawa, Etsuji; Ouchi, Yasuomi.
Afiliação
  • Onishi Y; Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan. Electronic address: yuya.onishi@hpk.co.jp.
  • Hashimoto F; Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan.
  • Ote K; Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan.
  • Ohba H; Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan.
  • Ota R; Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan.
  • Yoshikawa E; Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601, Japan.
  • Ouchi Y; Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
Med Image Anal ; 74: 102226, 2021 12.
Article em En | MEDLINE | ID: mdl-34563861
Although supervised convolutional neural networks (CNNs) often outperform conventional alternatives for denoising positron emission tomography (PET) images, they require many low- and high-quality reference PET image pairs. Herein, we propose an unsupervised 3D PET image denoising method based on an anatomical information-guided attention mechanism. The proposed magnetic resonance-guided deep decoder (MR-GDD) utilizes the spatial details and semantic features of MR-guidance image more effectively by introducing encoder-decoder and deep decoder subnetworks. Moreover, the specific shapes and patterns of the guidance image do not affect the denoised PET image, because the guidance image is input to the network through an attention gate. In a Monte Carlo simulation of [18F]fluoro-2-deoxy-D-glucose (FDG), the proposed method achieved the highest peak signal-to-noise ratio and structural similarity (27.92 ± 0.44 dB/0.886 ± 0.007), as compared with Gaussian filtering (26.68 ± 0.10 dB/0.807 ± 0.004), image guided filtering (27.40 ± 0.11 dB/0.849 ± 0.003), deep image prior (DIP) (24.22 ± 0.43 dB/0.737 ± 0.017), and MR-DIP (27.65 ± 0.42 dB/0.879 ± 0.007). Furthermore, we experimentally visualized the behavior of the optimization process, which is often unknown in unsupervised CNN-based restoration problems. For preclinical (using [18F]FDG and [11C]raclopride) and clinical (using [18F]florbetapir) studies, the proposed method demonstrates state-of-the-art denoising performance while retaining spatial resolution and quantitative accuracy, despite using a common network architecture for various noisy PET images with 1/10th of the full counts. These results suggest that the proposed MR-GDD can reduce PET scan times and PET tracer doses considerably without impacting patients.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Tomografia por Emissão de Pósitrons Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Tomografia por Emissão de Pósitrons Idioma: En Ano de publicação: 2021 Tipo de documento: Article