Your browser doesn't support javascript.
loading
Tolerability to non-endosomal, micron-scale cell penetration probed with magnetic particles.
Ruiz-Cánovas, Eugènia; Mendoza, Rosa; Villaverde, Antonio; Corchero, José L.
Afiliação
  • Ruiz-Cánovas E; Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
  • Mendoza R; Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain.
  • Villaverde A; Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellat
  • Corchero JL; Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellat
Colloids Surf B Biointerfaces ; 208: 112123, 2021 Dec.
Article em En | MEDLINE | ID: mdl-34571468
ABSTRACT
The capability of HeLa cells to internalize large spherical microparticles has been evaluated by using inorganic, magnetic microparticles of 1 and 2.8 µm of diameter. In both absence but especially under the action of a magnet, both types of particles were uptaken, in absence of cytotoxicity, by a significant percentage of cells, in a non-endosomal process clearly favored by the magnetic field. The engulfed particles efficiently drive inside the cells chemically associated proteins such as GFP and human alpha-galactosidase A, without any apparent loss of protein functionalities. While 1 µm particles are completely engulfed, at least a fraction of 2.8 µm particles remain embedded into the cell membrane, with only a fraction of their surface in cytoplasmic contact. The detected tolerance to endosomal-independent cell penetration of microscale objects is not then restricted to organic, soft materials (such as bacterial inclusion bodies) as previously described, but it is a more general phenomenon also applicable to inorganic materials. In this scenario, the use of magnetic particles in combination with external magnetic fields can represent a significant improvement in the internalization efficiency of such agents optimized as drug carriers. This fact offers a wide potential in the design and engineering of novel particulate vehicles for therapeutic, diagnostic and theragnostic applications.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Portadores de Fármacos / Magnetismo Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Portadores de Fármacos / Magnetismo Idioma: En Ano de publicação: 2021 Tipo de documento: Article