Your browser doesn't support javascript.
loading
A Bifunctional Silicon Dielectric Metasurface Based on Quasi-Bound States in the Continuum.
Wang, Jianan; Liu, Weici; Wei, Zhongchao; Meng, Hongyun; Liu, Hongzhan; Guo, Jianping; Yang, Manxing; Song, Yongkang; Xiang, Liujing; Huang, Zhenming; Li, Haoxian; Wang, Faqiang.
Afiliação
  • Wang J; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Liu W; School of Engineering, Guangzhou College of Technology and Business, Foshan 528138, China.
  • Wei Z; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Meng H; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Liu H; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Guo J; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Yang M; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Song Y; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Xiang L; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Huang Z; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Li H; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
  • Wang F; Guangzhou Key Laboratory for Special Fiber Photonic Devices, Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.
Nanomaterials (Basel) ; 11(9)2021 Sep 11.
Article em En | MEDLINE | ID: mdl-34578673
Quasi-bound states in the continuum provide an effective and observable way to improve metasurface performance, usually with an ultra-high-quality factor. Dielectric metasurfaces dependent on Mie resonances have the characteristic of significantly low loss, and the polarization can be affected by the parameter tuning of the structure. Based on the theory of quasi-bound states in the continuum, we propose and simulate a bifunctional resonant metasurface, whose periodic unit structure consists of four antiparallel and symmetrical amorphous silicon columns embedded in a poly(methyl methacrylate) layer. The metasurface can exhibit an extreme Huygens' regime in the case of an incident plane wave with linear polarization, while exhibiting chirality in the case of incident circular polarized light. Our structure provides ideas for promoting the multifunctional development of flat optical devices, as well as presenting potential in polarization-dependent fields.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article