Your browser doesn't support javascript.
loading
Excited states engineering enables efficient near-infrared lasing in nanographenes.
Paternò, Giuseppe M; Chen, Qiang; Muñoz-Mármol, Rafael; Guizzardi, Michele; Bonal, Víctor; Kabe, Ryota; Barker, Alexander J; Boj, Pedro G; Chatterjee, Shreyam; Ie, Yutaka; Villalvilla, José M; Quintana, José A; Scotognella, Francesco; Müllen, Klaus; Díaz-García, María A; Narita, Akimitsu; Lanzani, Guglielmo.
Afiliação
  • Paternò GM; Center for Nano Science and Technology, Istituto Italiano di Tecnologia (IIT), Via Pascoli 10, 20133, Milano, Italy. guglielmo.lanzani@iit.it.
  • Chen Q; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany. narita@mpip-mainz.mpg.de.
  • Muñoz-Mármol R; Departamento de Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, 03080 Alicante, Spain. maria.diaz@ua.es.
  • Guizzardi M; Physics Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.
  • Bonal V; Departamento de Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, 03080 Alicante, Spain. maria.diaz@ua.es.
  • Kabe R; Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
  • Barker AJ; Center for Nano Science and Technology, Istituto Italiano di Tecnologia (IIT), Via Pascoli 10, 20133, Milano, Italy. guglielmo.lanzani@iit.it.
  • Boj PG; Departamento de Óptica, Farmacología y Anatomía and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, 03080 Alicante, Spain.
  • Chatterjee S; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
  • Ie Y; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
  • Villalvilla JM; Departamento de Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, 03080 Alicante, Spain. maria.diaz@ua.es.
  • Quintana JA; Departamento de Óptica, Farmacología y Anatomía and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, 03080 Alicante, Spain.
  • Scotognella F; Physics Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.
  • Müllen K; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany. narita@mpip-mainz.mpg.de.
  • Díaz-García MA; Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
  • Narita A; Departamento de Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, 03080 Alicante, Spain. maria.diaz@ua.es.
  • Lanzani G; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany. narita@mpip-mainz.mpg.de.
Mater Horiz ; 9(1): 393-402, 2022 Jan 04.
Article em En | MEDLINE | ID: mdl-34605501
The spectral overlap between stimulated emission (SE) and absorption from dark states (i.e. charges and triplets) especially in the near-infrared (NIR), represents one of the most effective gain loss channels in organic semiconductors. Recently, bottom-up synthesis of atomically precise graphene nanostructures, or nanographenes (NGs), has opened a new route for the development of environmentally and chemically stable materials with optical gain properties. However, also in this case, the interplay between gain and absorption losses has hindered the attainment of efficient lasing action in the NIR. Here, we demonstrate that the introduction of two fluoranthene imide groups to the NG core leads to a more red-shifted emission than the precursor NG molecule (685 vs. 615 nm) and also with a larger Stokes shift (45 nm vs. 2 nm, 1026 cm-1vs. 53 cm-1, respectively). Photophysical results indicate that, besides the minimisation of ground state absorption losses, such substitution permits to suppress the detrimental excited state absorption in the NIR, which likely arises from a dark state with charge-transfer character and triplets. This has enabled NIR lasing (720 nm) from all-solution processed distributed feedback devices with one order of magnitude lower thresholds than those of previously reported NIR-emitting NGs. This study represents an advance in the field of NGs and, in general, organic semiconductor photonics, towards the development of cheap and stable NIR lasers.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article