Your browser doesn't support javascript.
loading
Bioelectric signaling and the control of cardiac cell identity in response to mechanical forces.
Fukui, Hajime; Chow, Renee Wei-Yan; Xie, Jing; Foo, Yoke Yin; Yap, Choon Hwai; Minc, Nicolas; Mochizuki, Naoki; Vermot, Julien.
Afiliação
  • Fukui H; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Illkirch, France.
  • Chow RW; Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
  • Xie J; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Illkirch, France.
  • Foo YY; Université de Paris, Centre National de la Recherche Scientifique UMR7592, Institut Jacques Monod, Paris, France.
  • Yap CH; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
  • Minc N; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
  • Mochizuki N; Department of Bioengineering, Imperial College London, London, UK.
  • Vermot J; Université de Paris, Centre National de la Recherche Scientifique UMR7592, Institut Jacques Monod, Paris, France.
Science ; 374(6565): 351-354, 2021 Oct 15.
Article em En | MEDLINE | ID: mdl-34648325
ABSTRACT
Developing cardiovascular systems use mechanical forces to take shape, but how ubiquitous blood flow forces instruct local cardiac cell identity is still unclear. By manipulating mechanical forces in vivo, we show here that shear stress is necessary and sufficient to promote valvulogenesis. We found that valve formation is associated with the activation of an extracellular adenosine triphosphate (ATP)­dependent purinergic receptor pathway, specifically triggering calcium ion (Ca2+) pulses and nuclear factor of activated T cells 1 (Nfatc1) activation. Thus, mechanical forces are converted into discrete bioelectric signals by an ATP-Ca2+-Nfatc1­mechanosensitive pathway to generate positional information and control valve formation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estresse Mecânico / Resistência ao Cisalhamento / Valvas Cardíacas Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estresse Mecânico / Resistência ao Cisalhamento / Valvas Cardíacas Idioma: En Ano de publicação: 2021 Tipo de documento: Article