Your browser doesn't support javascript.
loading
A Novel Antagonist Peptide Reveals a Physiological Role of Insulin-Like Peptide 5 in Control of Colorectal Function.
Pustovit, Ruslan V; Zhang, Xiaozhou; Liew, Jamie Jm; Praveen, Praveen; Liu, Mengjie; Koo, Ada; Oparija-Rogenmozere, Lalita; Ou, Qinghao; Kocan, Martina; Nie, Shuai; Bathgate, Ross Ad; Furness, John B; Hossain, Mohammed Akhter.
Afiliação
  • Pustovit RV; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Zhang X; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Liew JJ; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Praveen P; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Liu M; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Koo A; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Oparija-Rogenmozere L; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Ou Q; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Kocan M; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Nie S; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Bathgate RA; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Furness JB; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
  • Hossain MA; The Florey Institute of Neuroscience and Mental Health; Department of Anatomy and Physiology; School of Biosciences, Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Institute; Department of Biochemistry and Pharmacology; School of Chemistry; The University of Melbourne, Parkville, Victori
ACS Pharmacol Transl Sci ; 4(5): 1665-1674, 2021 Oct 08.
Article em En | MEDLINE | ID: mdl-34661082
ABSTRACT
Insulin-like peptide 5 (INSL5), the natural ligand for the relaxin family peptide receptor 4 (RXFP4), is a gut hormone that is exclusively produced by colonic L-cells. We have recently developed an analogue of INSL5, INSL5-A13, that acts as an RXFP4 agonist in vitro and stimulates colorectal propulsion in wild-type mice but not in RXFP4-knockout mice. These results suggest that INSL5 may have a physiological role in the control of colorectal motility. To investigate this possibility, in this study we designed and developed a novel INSL5 analogue, INSL5-A13NR. This compound is a potent antagonist, without significant agonist activity, in two in vitro assays. We report here for the first time that this novel antagonist peptide blocks agonist-induced increase in colon motility in mice that express RXFP4. Our data also show that colorectal propulsion induced by intracolonic administration of bacterial products (short-chain fatty acids, SCFAs) is antagonized by INSL5-A13NR. Therefore, INSL5-A13NR is an important research tool and potential drug lead for the treatment of colon motility disorders, such as bacterial diarrheas.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article