Your browser doesn't support javascript.
loading
Radiation-induced airway changes and downstream ventilation decline in a swine model.
Wallat, Eric M; Wuschner, Antonia E; Flakus, Mattison J; Christensen, Gary E; Reinhardt, Joseph M; Shanmuganayagam, Dhanansayan; Bayouth, John E.
Afiliação
  • Wallat EM; Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States of America.
  • Wuschner AE; Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States of America.
  • Flakus MJ; Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53705, United States of America.
  • Christensen GE; Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, United States of America.
  • Reinhardt JM; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, United States of America.
  • Shanmuganayagam D; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, United States of America.
  • Bayouth JE; Department of Radiology, University of Iowa, Iowa City, IA 52242, United States of America.
Biomed Phys Eng Express ; 7(6)2021 10 29.
Article em En | MEDLINE | ID: mdl-34670195
ABSTRACT
Purpose.To investigate indirect radiation-induced changes in airways as precursors to atelectasis post radiation therapy (RT).Methods.Three Wisconsin Miniature Swine (WMSTM) underwent a research course of 60 Gy in 5 fractions delivered to a targeted airway/vessel in the inferior left lung. The right lung received a max point dose <5 Gy. Airway segmentation was performed on the pre- and three months post-RT maximum inhale phase of the four-dimensional (4D) computed tomography (CT) scans. Changes in luminal area (Ai) and square root of wall area (WA) for each airway were investigated. Changes in ventilation were assessed using the Jacobian ratio and were measured in three different regions the inferior left lung <5 Gy (ILL), the superior left lung <5 Gy (SLL), and the contralateral right lung <5 Gy (RL).Results.Airways (n = 25) in the right lung for all swine showed no significant changes (p = 0.48) in Ai post-RT compared to pre-RT. Airways (n = 28) in the left lung of all swine were found to have a significant decrease (p < 0.001) in Ai post-RT compared to pre-RT, correlated (Pearson R = -0.97) with airway dose. Additionally,WAdecreased significantly (p < 0.001) with airway dose. Lastly, the Jacobian ratio of the ILL (0.883) was lower than that of the SLL (0.932) and the RL (0.955).Conclusions.This work shows that for the swine analyzed, there were significant correlations between Ai andWAchange with radiation dose. Additionally, there was a decrease in lung function in the regions of the lung supplied by the irradiated airways compared to the regions supplied by unirradiated airways. These results support the hypothesis that airway dose should be considered during treatment planning in order to potentially preserve functional lung and reduce lung toxicities.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Respiração Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Respiração Idioma: En Ano de publicação: 2021 Tipo de documento: Article