Your browser doesn't support javascript.
loading
The Origin of Plasma-Derived Bacterial Extracellular Vesicles in Healthy Individuals and Patients with Inflammatory Bowel Disease: A Pilot Study.
Jones, Emily; Stentz, Régis; Telatin, Andrea; Savva, George M; Booth, Catherine; Baker, David; Rudder, Steven; Knight, Stella C; Noble, Alistair; Carding, Simon R.
Afiliação
  • Jones E; Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK.
  • Stentz R; Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK.
  • Telatin A; Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK.
  • Savva GM; Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK.
  • Booth C; Core Science Resources, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK.
  • Baker D; Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK.
  • Rudder S; Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK.
  • Knight SC; Antigen Presentation Research Group, Northwick Park & St. Mark's Hospital Campus, Imperial College London, Harrow HA1 3UJ, UK.
  • Noble A; Antigen Presentation Research Group, Northwick Park & St. Mark's Hospital Campus, Imperial College London, Harrow HA1 3UJ, UK.
  • Carding SR; Gut Microbes and Health Research Programme, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK.
Genes (Basel) ; 12(10)2021 10 18.
Article em En | MEDLINE | ID: mdl-34681030
ABSTRACT
The gastrointestinal tract harbors the gut microbiota, structural alterations of which (dysbiosis) are linked with an increase in gut permeability ("leaky gut"), enabling luminal antigens and bacterial products such as nanosized bacterial extracellular vesicles (BEVs) to access the circulatory system. Blood-derived BEVs contain various cargoes and may be useful biomarkers for diagnosis and monitoring of disease status and relapse in conditions such as inflammatory bowel disease (IBD). To progress this concept, we developed a rapid, cost-effective protocol to isolate BEV-associated DNA and used 16S rRNA gene sequencing to identify bacterial origins of the blood microbiome of healthy individuals and patients with Crohn's disease and ulcerative colitis. The 16S rRNA gene sequencing successfully identified the origin of plasma-derived BEV DNA. The analysis showed that the blood microbiota richness, diversity, or composition in IBD, healthy control, and protocol control groups were not significantly distinct, highlighting the issue of 'kit-ome' contamination in low-biomass studies. Our pilot study provides the basis for undertaking larger studies to determine the potential use of blood microbiota profiling as a diagnostic aid in IBD.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biomarcadores / Doenças Inflamatórias Intestinais / Colite Ulcerativa / Doença de Crohn / Vesículas Extracelulares Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biomarcadores / Doenças Inflamatórias Intestinais / Colite Ulcerativa / Doença de Crohn / Vesículas Extracelulares Idioma: En Ano de publicação: 2021 Tipo de documento: Article