Your browser doesn't support javascript.
loading
Data-Driven Modeling of the Cellular Pharmacokinetics of Degradable Chitosan-Based Nanoparticles.
Summers, Huw D; Gomes, Carla P; Varela-Moreira, Aida; Spencer, Ana P; Gomez-Lazaro, Maria; Pêgo, Ana P; Rees, Paul.
Afiliação
  • Summers HD; Department of Biomedical Engineering, Swansea University, Swansea SA1 8QQ, UK.
  • Gomes CP; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
  • Varela-Moreira A; Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal.
  • Spencer AP; Faculdade de Engenharia da Universidade do Porto (FEUP), Universidade do Porto, 4200-465 Porto, Portugal.
  • Gomez-Lazaro M; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
  • Pêgo AP; Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal.
  • Rees P; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
Nanomaterials (Basel) ; 11(10)2021 Oct 03.
Article em En | MEDLINE | ID: mdl-34685047
Nanoparticle drug delivery vehicles introduce multiple pharmacokinetic processes, with the delivery, accumulation, and stability of the therapeutic molecule influenced by nanoscale processes. Therefore, considering the complexity of the multiple interactions, the use of data-driven models has critical importance in understanding the interplay between controlling processes. We demonstrate data simulation techniques to reproduce the time-dependent dose of trimethyl chitosan nanoparticles in an ND7/23 neuronal cell line, used as an in vitro model of native peripheral sensory neurons. Derived analytical expressions of the mean dose per cell accurately capture the pharmacokinetics by including a declining delivery rate and an intracellular particle degradation process. Comparison with experiment indicates a supply time constant, τ = 2 h. and a degradation rate constant, b = 0.71 h-1. Modeling the dose heterogeneity uses simulated data distributions, with time dependence incorporated by transforming data-bin values. The simulations mimic the dynamic nature of cell-to-cell dose variation and explain the observed trend of increasing numbers of high-dose cells at early time points, followed by a shift in distribution peak to lower dose between 4 to 8 h and a static dose profile beyond 8 h.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article