Your browser doesn't support javascript.
loading
Synthesis of ZrO2:Pr3+,Gd3+ nanocrystals for optical thermometry with a thermal sensitivity above 2.32% K-1 over 270 K of sensing range.
Li, Minghui; Zhou, Jun; Lei, Ruoshan; Wang, Huanping; Huang, Feifei; Xu, Shiqing.
Afiliação
  • Li M; College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China.
  • Zhou J; Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, China. whpcjlu@126.com.
  • Lei R; School of Physics, Southeast University, Nanjing, 211189, China.
  • Wang H; Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, China. whpcjlu@126.com.
  • Huang F; Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, China. whpcjlu@126.com.
  • Xu S; Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, China. whpcjlu@126.com.
Dalton Trans ; 50(43): 15688-15695, 2021 Nov 09.
Article em En | MEDLINE | ID: mdl-34693945
ABSTRACT
Nowadays, there is enthusiastic effort to develop luminescent thermometers used for remote and high-sensitivity temperature readout over a wide sensing range. Herein, Pr3+ and Gd3+ co-doped ZrO2 nanocrystals are designed, prepared and investigated by XRD, Raman spectroscopy, XPS, TEM, EDS, DRS, PLE and PL spectroscopy. Upon 275 nm irradiation, the PL spectrum of ZrO2Pr3+,Gd3+ is found to be composed of a narrow emission peak at 314 nm (Gd3+ 6P7/2-8S7/2), a broad defect-related emission band at 400 nm, and several emission peaks in the wavelength region of 585-700 nm (Pr3+ 1D2-3H4, 3P0-3H6, and 3P0-3F2), which exhibit different thermal responses owing to the effects of the various non-radiative relaxation processes and trap energy levels. Accordingly, the luminescence intensity ratio (LIR) between the Pr3+ 1D2-3H4 and Gd3+ 6P7/2-8S7/2 transitions demonstrates excellent relative sensing sensitivity values ((2.32 ± 0.01)% K-1-(8.32 ± 0.05)% K-1) and low temperature uncertainties (0.08 K-0.28 K) over a wide temperature sensing range of 303 K to 573 K, which are remarkably better than those of many other luminescence thermometers. What is discussed in the present study may be conducive to broadening the research region of RE3+ doped luminescence thermometric phosphors, especially for materials with rich 4f-4f transition lines and defect-related luminescence.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article