Your browser doesn't support javascript.
loading
Neural network features distinguish chemosensory stimuli in Caenorhabditis elegans.
How, Javier J; Navlakha, Saket; Chalasani, Sreekanth H.
Afiliação
  • How JJ; Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States of America.
  • Navlakha S; Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States of America.
  • Chalasani SH; Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America.
PLoS Comput Biol ; 17(11): e1009591, 2021 11.
Article em En | MEDLINE | ID: mdl-34752447
ABSTRACT
Nervous systems extract and process information from the environment to alter animal behavior and physiology. Despite progress in understanding how different stimuli are represented by changes in neuronal activity, less is known about how they affect broader neural network properties. We developed a framework for using graph-theoretic features of neural network activity to predict ecologically relevant stimulus properties, in particular stimulus identity. We used the transparent nematode, Caenorhabditis elegans, with its small nervous system to define neural network features associated with various chemosensory stimuli. We first immobilized animals using a microfluidic device and exposed their noses to chemical stimuli while monitoring changes in neural activity of more than 50 neurons in the head region. We found that graph-theoretic features, which capture patterns of interactions between neurons, are modulated by stimulus identity. Further, we show that a simple machine learning classifier trained using graph-theoretic features alone, or in combination with neural activity features, can accurately predict salt stimulus. Moreover, by focusing on putative causal interactions between neurons, the graph-theoretic features were almost twice as predictive as the neural activity features. These results reveal that stimulus identity modulates the broad, network-level organization of the nervous system, and that graph theory can be used to characterize these changes.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Caenorhabditis elegans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Caenorhabditis elegans Idioma: En Ano de publicação: 2021 Tipo de documento: Article