Your browser doesn't support javascript.
loading
Technical Workflow Development for Integrating Drone Surveys and Entomological Sampling to Characterise Aquatic Larval Habitats of Anopheles funestus in Agricultural Landscapes in Côte d'Ivoire.
Byrne, Isabel; Chan, Kallista; Manrique, Edgar; Lines, Jo; Wolie, Rosine Z; Trujillano, Fedra; Garay, Gabriel Jimenez; Del Prado Cortez, Miguel Nunez; Alatrista-Salas, Hugo; Sternberg, Eleanore; Cook, Jackie; N'Guessan, Raphael; Koffi, Alphonsine; Ahoua Alou, Ludovic P; Apollinaire, Nombre; Messenger, Louisa A; Kristan, Mojca; Carrasco-Escobar, Gabriel; Fornace, Kimberly.
Afiliação
  • Byrne I; Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
  • Chan K; Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
  • Manrique E; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
  • Lines J; Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
  • Wolie RZ; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
  • Trujillano F; Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
  • Garay GJ; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
  • Del Prado Cortez MN; Institut Pierre Richet, Bouaké, Côte d'Ivoire.
  • Alatrista-Salas H; Laboratoire de génétique, Unité de Formation et de Recherche en Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire.
  • Sternberg E; Universidad Peruana Cayetano Heredia, Lima, Peru.
  • Cook J; Universidad Peruana Cayetano Heredia, Lima, Peru.
  • N'Guessan R; Universidad de Ingenieria y Tecnología, Lima, Peru.
  • Koffi A; Pontificia Universidad Católica Del Perú, Lima, Peru.
  • Ahoua Alou LP; Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
  • Apollinaire N; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
  • Messenger LA; Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
  • Kristan M; Institut Pierre Richet, Bouaké, Côte d'Ivoire.
  • Carrasco-Escobar G; Institut Pierre Richet, Bouaké, Côte d'Ivoire.
  • Fornace K; Institut Pierre Richet, Bouaké, Côte d'Ivoire.
J Environ Public Health ; 2021: 3220244, 2021.
Article em En | MEDLINE | ID: mdl-34759971
Land-use practices such as agriculture can impact mosquito vector breeding ecology, resulting in changes in disease transmission. The typical breeding habitats of Africa's second most important malaria vector Anopheles funestus are large, semipermanent water bodies, which make them potential candidates for targeted larval source management. This is a technical workflow for the integration of drone surveys and mosquito larval sampling, designed for a case study aiming to characterise An. funestus breeding sites near two villages in an agricultural setting in Côte d'Ivoire. Using satellite remote sensing data, we developed an environmentally and spatially representative sampling frame and conducted paired mosquito larvae and drone mapping surveys from June to August 2021. To categorise the drone imagery, we also developed a land cover classification scheme with classes relative to An. funestus breeding ecology. We sampled 189 potential breeding habitats, of which 119 (63%) were positive for the Anopheles genus and nine (4.8%) were positive for An. funestus. We mapped 30.42 km2 of the region of interest including all water bodies which were sampled for larvae. These data can be used to inform targeted vector control efforts, although its generalisability over a large region is limited by the fine-scale nature of this study area. This paper develops protocols for integrating drone surveys and statistically rigorous entomological sampling, which can be adjusted to collect data on vector breeding habitats in other ecological contexts. Further research using data collected in this study can enable the development of deep-learning algorithms for identifying An. funestus breeding habitats across rural agricultural landscapes in Côte d'Ivoire and the analysis of risk factors for these sites.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Malária / Anopheles Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Malária / Anopheles Idioma: En Ano de publicação: 2021 Tipo de documento: Article