Pure balanced steady-state free precession imaging (pure bSSFP).
Magn Reson Med
; 87(4): 1886-1893, 2022 Apr.
Article
em En
| MEDLINE
| ID: mdl-34775622
PURPOSE: To show that for tissues the conspicuous asymmetries in the frequency response function of bSSFP can be mitigated by using a short enough TR. THEORY AND METHODS: Configuration theory indicates that bSSFP becomes apparently "pure" (i.e., exhibiting a symmetric profile) in the limit of TR â 0 . To this end, the frequency profile of bSSFP was measured as a function of the TR using a manganese-doped aqueous probe, as well as brain tissue that was shown to exhibit a pronounced asymmetry due to its microstructure. The frequency response function was sampled using N = 72 (phantom) and N = 36 (in vivo) equally distributed linear RF phase increments in the interval [ 0 , 2 π ) . Imaging was performed with 2.0 mm isotropic resolution over a TR range of 1.5-8 ms at 3 and 1.5 T. RESULTS: As expected, pure substances showed a symmetric TR-independent frequency profile, whereas brain tissue revealed a pronounced asymmetry. The observed asymmetry for the tissue, however, decreases with decreasing TR and gives strong evidence that the frequency response function of bSSFP becomes symmetric in the limit of TR â 0 , in agreement with theory. The limit of apparently pure bSSFP imaging can thus be achieved for a TR â¼ 1.5 ms at 1.5 T, whereas at 3 T, tissues still show some residual asymmetry. CONCLUSION: In the limit of short enough TR, tissues become apparently pure for bSSFP. This limit can be reached for brain tissue at 1.5 T with TR â¼ 1-2 ms at clinically relevant resolutions.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Imageamento por Ressonância Magnética
/
Interpretação de Imagem Assistida por Computador
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article