Your browser doesn't support javascript.
loading
Tumor Microenvironment-Activated Theranostics Nanozymes for Fluorescence Imaging and Enhanced Chemo-Chemodynamic Therapy of Tumors.
Zhao, Dong-Hui; Li, Chao-Qing; Hou, Xiao-Lin; Xie, Xiao-Ting; Zhang, Bin; Wu, Gui-Ying; Jin, Fang; Zhao, Yuan-Di; Liu, Bo.
Afiliação
  • Zhao DH; Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei,
  • Li CQ; Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei,
  • Hou XL; Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei,
  • Xie XT; Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei,
  • Zhang B; Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei,
  • Wu GY; Hubei Novel Reactor and Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China.
  • Jin F; Hubei Novel Reactor and Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China.
  • Zhao YD; Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei,
  • Liu B; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
ACS Appl Mater Interfaces ; 13(47): 55780-55789, 2021 Dec 01.
Article em En | MEDLINE | ID: mdl-34787410
ABSTRACT
Chemodynamic therapy (CDT) is widely explored for tumor-specific therapy by converting endogenous H2O2 to lethal ·OH to destroy cancer cells. However, ·OH scavenging by glutathione (GSH) and insufficient intratumoral H2O2 levels seriously hinder the application of CDT. Herein, we reported the fabrication of copper ion-doped ZIF-8 loaded with gold nanozymes and doxorubicin hydrochloride (DOX) for the chemotherapy and CDT synergistic treatment of tumors with the assistance of tumor microenvironment (TME)-activated fluorescence imaging. The Cu2+-doped ZIF-8 shell was gradually degraded to release DOX and gold nanoclusters responding to the acidic TME. The fluorescence signal of the tumor region was acquired after the quenched fluorescence of the gold nanoclusters by Cu2+ and DOX by aggregation-induced quenching was turned on because of the interaction of GSH with Cu2+ and the release of free DOX. The Cu2+ ions could deplete the GSH via redox reactions and the generated Cu+ could convert internal H2O2 to ·OH for tumor CDT. The chemotherapeutic effect of DOX was strengthened through drug efflux inhibition and drug sensitivity increase due to the consumption of GSH and ·OH burst. Moreover, DOX could raise the level of H2O2 and augment the effect of CDT. In addition, the fluorescent gold nanoclusters not only served as a peroxidase to convert H2O2 to ·OH but also employed as an oxidase to consume GSH, resulting in the amplification of chemotherapy and CDT. This work presents an approach to construct tumor microenvironment-activated theranostic probes without external stimuli and to achieve the tumor elimination through cascade reactions and synergistic treatment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doxorrubicina / Nanopartículas Metálicas / Microambiente Tumoral / Imagem Óptica / Nanomedicina Teranóstica / Ouro / Antibióticos Antineoplásicos Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doxorrubicina / Nanopartículas Metálicas / Microambiente Tumoral / Imagem Óptica / Nanomedicina Teranóstica / Ouro / Antibióticos Antineoplásicos Idioma: En Ano de publicação: 2021 Tipo de documento: Article