Your browser doesn't support javascript.
loading
Seizure detection from multi-channel EEG using entropy-based dynamic graph embedding.
Li, Gen; Jung, Jason J.
Afiliação
  • Li G; Department of Computer Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
  • Jung JJ; Department of Computer Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea. Electronic address: j3ung@cau.ac.kr.
Artif Intell Med ; 122: 102201, 2021 12.
Article em En | MEDLINE | ID: mdl-34823838
An epileptic seizure is a chronic disease with sudden abnormal discharge of brain neurons, which leads to transient brain dysfunction. To detect epileptic seizures, we propose a novel idea based on a dynamic graph embedding model. The dynamic graph is built by identifying the correlation among the multi-channel EEG signals. Graph entropy measurement is exploited to calculate the similarity among the graph at each time interval and construct the graph embedding space. Since the abnormal electrical brain activity causes the epileptic seizure, the graph entropy during the seizure time interval is different from other time intervals. Therefore, we propose an entropy-based dynamic graph embedding model to cluster the graphs, and the graphs with epileptic seizures are discriminated. We applied the proposed approach to the Children Hospital Boston-Massachusetts Institute of Technology Scalp EEG database. The results have shown that the proposed approach outperformed the baselines by 1.4% with respect to accuracy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Sinais Assistido por Computador Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Processamento de Sinais Assistido por Computador Idioma: En Ano de publicação: 2021 Tipo de documento: Article