Your browser doesn't support javascript.
loading
In Vitro Killing of Canine Urinary Tract Infection Pathogens by Ampicillin, Cephalexin, Marbofloxacin, Pradofloxacin, and Trimethoprim/Sulfamethoxazole.
Blondeau, Joseph M; Fitch, Shantelle D.
Afiliação
  • Blondeau JM; Departments of Microbiology and Immunology, Pathology and Laboratory Medicine and Ophthalmology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada.
  • Fitch SD; Department of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, SK S7N 0W8, Canada.
Microorganisms ; 9(11)2021 Nov 02.
Article em En | MEDLINE | ID: mdl-34835405
ABSTRACT
Urinary tract infections are common in dogs, necessitating antimicrobial therapy. We determined the speed and extent of in vitro killing of canine urinary tract infection pathogens by five antimicrobial agents (ampicillin, cephalexin, marbofloxacin, pradofloxacin, and trimethoprim/sulfamethoxazole) following the first 3 h of drug exposure. Minimum inhibitory and mutant prevention drug concentrations were determined for each strain. In vitro killing was determined by exposing bacteria to clinically relevant drug concentrations and recording the log10 reduction and percent kill in viable cells at timed intervals. Marbofloxacin and pradofloxacin killed more bacterial cells, and faster than other agents, depending on the time of sampling and drug concentration. Significant differences were seen between drugs for killing Escherichia coli, Proteus mirabilis, Enterococcus faecalis, and Staphylococcus pseudintermedius strains. At the maximum urine drug concentrations, significantly more E. coli cells were killed by marbofloxacin than by ampicillin (p < 0.0001), cephalexin (p < 0.0001), and TMP/SMX (p < 0.0001) and by pradofloxacin than by cephalexin (p < 0.0001) and TMP/SMX (p < 0.0001), following 5 min of drug exposure. Rapid killing of bacteria should inform thinking on drug selection for short course therapy for uncomplicated UTIs, without compromising patient care, and is consistent with appropriate antimicrobial use and stewardship principles.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article