Your browser doesn't support javascript.
loading
MLb-LDLr: A Machine Learning Model for Predicting the Pathogenicity of LDLr Missense Variants.
Larrea-Sebal, Asier; Benito-Vicente, Asier; Fernandez-Higuero, José A; Jebari-Benslaiman, Shifa; Galicia-Garcia, Unai; Uribe, Kepa B; Cenarro, Ana; Ostolaza, Helena; Civeira, Fernando; Arrasate, Sonia; González-Díaz, Humberto; Martín, César.
Afiliação
  • Larrea-Sebal A; Fundación Biofísica Bizkaia, Leioa, Spain.
  • Benito-Vicente A; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
  • Fernandez-Higuero JA; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
  • Jebari-Benslaiman S; Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
  • Galicia-Garcia U; Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
  • Uribe KB; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
  • Cenarro A; Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
  • Ostolaza H; Fundación Biofísica Bizkaia, Leioa, Spain.
  • Civeira F; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
  • Arrasate S; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.
  • González-Díaz H; Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Universidad de Zaragoza, Spain.
  • Martín C; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
JACC Basic Transl Sci ; 6(11): 815-827, 2021 Nov.
Article em En | MEDLINE | ID: mdl-34869944
Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mutations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software constitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and management of FH disease. This work provides a reliable machine learning model to accurately predict the pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article