Your browser doesn't support javascript.
loading
An identification of MARK inhibitors using high throughput MALDI-TOF mass spectrometry.
Hruba, Lenka; Polishchuk, Pavel; Das, Viswanath; Hajduch, Marian; Dzubak, Petr.
Afiliação
  • Hruba L; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic. Electronic address: lenka.hruba@upol.cz.
  • Polishchuk P; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic. Electronic address: pavlo.polishchuk@upol.cz.
  • Das V; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic. Electronic address: viswanath.das@upol.cz.
  • Hajduch M; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic. Electronic address: marian.hajduch@upol.cz.
  • Dzubak P; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Olomouc, Czech Republic. Electronic address: petr.dzubak@upol.cz.
Biomed Pharmacother ; 146: 112549, 2022 Feb.
Article em En | MEDLINE | ID: mdl-34923338
MAP/microtubule affinity-regulating kinases (MARKs) were recently identified as potential drug targets for Alzheimer's disease (AD) due to their role in pathological hyperphosphorylation of tau protein. Hyperphosphorylated tau has decreased affinity for microtubule binding, impairing their stability and associated functions. Destabilization of microtubules in neuronal cells leads to neurodegeneration, and microtubule-unbound tau forms neurofibrillary tangles, one of the primary hallmarks of AD. Many phosphorylation sites of tau protein have been identified, but phosphorylation at Ser262, which occurs in early stages of AD, plays a vital role in the pathological hyperphosphorylation of tau. It has been found that Ser262 is phosphorylated by MARK4, which is currently an intensively studied target for treating Alzheimer's disease and other neurodegenerative diseases. Our present study aimed to develop a high throughput compatible assay to directly detect MARK enzymatic activity using echoacoustic transfer and MALDI-TOF mass spectrometer. We optimized the assay for all four isoforms of MARK and validated its use for identifying potential inhibitors by the screening of 1280 compounds from the LOPAC®1280 International (Library Of Pharmacologically Active Compounds). Six MARK4 inhibitors with IC50 < 1 µM were identified. To demonstrate their therapeutic potential, active compounds were further tested for MARK4 selectivity and ability to cross the blood-brain barrier. Lastly, the molecular docking with the most active inhibitors to predict their interaction with MARK4 was performed.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz / Doença de Alzheimer Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz / Doença de Alzheimer Idioma: En Ano de publicação: 2022 Tipo de documento: Article