The 2',3'-dideoxyriboside of 2,6-diaminopurine and its 2',3'-didehydro derivative inhibit the deamination of 2',3'-dideoxyadenosine, an inhibitor of human immunodeficiency virus (HIV) replication.
Biochem Biophys Res Commun
; 145(1): 277-83, 1987 May 29.
Article
em En
| MEDLINE
| ID: mdl-3496090
The 2',3'-dideoxyriboside of 2,6-diaminopurine (ddDAPR) and its 2',3'-didehydro derivative (ddeDAPR) are poor substrates for adenosine deaminase (ADA) but potent inhibitors of the enzyme. Their Km values for ADA are of the same order of magnitude as those of the natural adenosine (Ado) and 2'-deoxyadenosine (dAdo), but their Vmax values are 35-fold (ddDAPR) to 350-fold (ddeDAPR) lower than those of Ado and dAdo. The Ki/K values of ADA for ddeDAPR (as inhibitor) and Ado, 2',3'-dideoxyadenosine (ddAdo) and 9-beta-D-arabinofuranosyladenine (araA) as the substrates are 0.17, 0.05 and 0.06, respectively. ddDAPR is about 3-fold less potent as an inhibitor of ADA than ddeDAPR. The 2,6-diaminopurine derivatives ddeDAPR and ddDAPR [which is also a potent inhibitor of human immunodeficiency virus (HIV)], may hold great promise, from a chemotherapeutic viewpoint, in combination with other adenosine analogues such as ddAdo and araA, which have been recognized and/or being pursued as either anti-retrovirus or anti-herpesvirus agents.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Didesoxinucleosídeos
/
Adenosina Desaminase
/
Desoxiadenosinas
/
HIV
/
Replicação do DNA
/
Nucleosídeo Desaminases
Idioma:
En
Ano de publicação:
1987
Tipo de documento:
Article