Your browser doesn't support javascript.
loading
Folate-functionalized SMMC-7721 liver cancer cell membrane-cloaked paclitaxel nanocrystals for targeted chemotherapy of hepatoma.
Shen, Wenwen; Ge, Shuke; Liu, Xiaoyao; Yu, Qi; Jiang, Xue; Wu, Qian; Tian, YuChen; Gao, Yu; Liu, Ying; Wu, Chao.
Afiliação
  • Shen W; Pharmacy School, Jinzhou Medical University, Jinzhou, China.
  • Ge S; Department of Emergency Management, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China.
  • Liu X; Pharmacy School, Jinzhou Medical University, Jinzhou, China.
  • Yu Q; Pharmacy School, Jinzhou Medical University, Jinzhou, China.
  • Jiang X; Pharmacy School, Jinzhou Medical University, Jinzhou, China.
  • Wu Q; Pharmacy School, Jinzhou Medical University, Jinzhou, China.
  • Tian Y; Department of Medical Oncology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
  • Gao Y; Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
  • Liu Y; Pharmacy School, Jinzhou Medical University, Jinzhou, China.
  • Wu C; Pharmacy School, Jinzhou Medical University, Jinzhou, China.
Drug Deliv ; 29(1): 31-42, 2022 Dec.
Article em En | MEDLINE | ID: mdl-34962215
ABSTRACT
In this study, we prepared a folic acid-functionalized SMMC-7721 liver cancer cell membrane (CM)-encapsulated paclitaxel nanocrystals system (FCPN) for hepatoma treatment. Transmission electron microscopy (TEM) characterization showed that FCPN was irregular spherical shapes with a particle size larger than 200 nm and a coated thickness of approximately 20 nm. In an in vitro release experiment, FCPN indicated a slowly release effect of paclitaxel (PTX). Cell experiments demonstrated that FCPN was taken up by SMMC-7721 cells and significantly inhibited the proliferation of SMMC-7721 cells, which illustrated that FCPN had good targeting ability compared with PN and CPN. According to the results of in vivo animal experiments, FCPN significantly inhibited tumor growth. Tissue distribution experiments proved that FCPN could accumulate significantly in tumor tissues, which further explained why FCPN had good targeting ability. These results clearly suggested that folate-functionalized homotypic CM bionic nanosystems might represent a very valuable method for liver cancer treatment in the future.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Paclitaxel / Carcinoma Hepatocelular / Ácido Fólico / Neoplasias Hepáticas / Antineoplásicos Fitogênicos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Paclitaxel / Carcinoma Hepatocelular / Ácido Fólico / Neoplasias Hepáticas / Antineoplásicos Fitogênicos Idioma: En Ano de publicação: 2022 Tipo de documento: Article