Your browser doesn't support javascript.
loading
Heterogeneous Versus Homogeneous Radiation Dose Calculations of Twice-Daily Fractionation in Small Cell Lung Carcinoma.
Thibodeau, Ryan; Li, Hsin K; Tanny, Sean; Gajra, Ajeet; Bogart, Jeffrey.
Afiliação
  • Thibodeau R; Department of Radiation Oncology, State University of New York Upstate Medical University, Syracuse, USA.
  • Li HK; Department of Radiation Oncology, State University of New York Upstate Medical University, Syracuse, USA.
  • Tanny S; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, USA.
  • Gajra A; Department of Medical Oncology, State University of New York Upstate Medical University, Syracuse, USA.
  • Bogart J; Department of Radiation Oncology, State University of New York Upstate Medical University, Syracuse, USA.
Cureus ; 13(12): e20226, 2021 Dec.
Article em En | MEDLINE | ID: mdl-35004043
Purpose The standard radiotherapy regimen for small cell lung cancer (SCLC) was determined using dose calculations without corrections for tissue heterogeneity, while modern treatments are planned using algorithms accounting for tissue heterogeneity. We assessed differences in dose delivered using heterogeneous and homogeneous dose calculations in a cohort of patients treated for limited-stage small cell lung cancer (LS-SCLC). Methods This is a retrospective analysis of 35 patients (three-dimensional conformal radiation therapy (3D-CRT), n = 22; intensity-modulated radiation therapy (IMRT), n = 13) with LS-SCLC treated with chemoradiotherapy from 2011 to 2017. Treatment plans were developed in the Eclipse Treatment Planning System (TPS) version 13.6 using the Analytical Anisotropic Algorithm (AAA). Two plans were generated for each patient with one using the unit relative electron density and the other maintaining the same monitor units (MUs) with tissue density corrections. The prescription was 45 Gy in 30 fractions of 1.5 Gy delivered twice daily. Individuals who underwent replanning within the same treatment course were evaluated using a separate corrected and uncorrected plan sum. Variations greater than 5% in dose to the tumor or organs at risk were considered clinically relevant. A two-sided paired t-test was used to evaluate the statistical significance of the dosimetric differences. Results The percent dose difference between plans without tissue heterogeneity corrections to those with corrections resulted in an overall median difference of -3% (range: -15.1% to 9.6%; p < 0.01) for the dose covering 95% of the planning target volume (PTV D95) and was -5.6% (range: -17.3% to 5.4%; p < 0.01) for lung volume receiving ≥20 Gy (lung V20). For 3D-CRT, the median difference for the PTV D95 was -0.1% (range: -4.7% to 9.6%; p = 0.62) and the lung V20 was -4.2% (range: -9.4 to 5.4; p < 0.01). For IMRT, the median difference for the PTV D95 was -10.0% (range: -15.1% to -5.3%; p < 0.01) and the lung V20 was -8.9% (range: -17.3 to -3.5; p < 0.01). Conclusion Traditional planning without tissue heterogeneity corrections results in an overall decrease in the dose delivered to the target compared with those that incorporate tissue heterogeneity corrections. These differences are modest for 3D treatment plans but may result in clinically relevant differences for the IMRT cohort (>5% deviation).
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article