Your browser doesn't support javascript.
loading
Solid-like Dynamic Nuclear Polarization Observed in the Fluid Phase of Lipid Bilayers at 9.4 T.
Kuzhelev, Andrei A; Dai, Danhua; Denysenkov, Vasyl; Prisner, Thomas F.
Afiliação
  • Kuzhelev AA; Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany.
  • Dai D; Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany.
  • Denysenkov V; Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany.
  • Prisner TF; Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany.
J Am Chem Soc ; 144(3): 1164-1168, 2022 01 26.
Article em En | MEDLINE | ID: mdl-35029974
ABSTRACT
Dynamic nuclear polarization (DNP) is a powerful method to enhance NMR sensitivity. Much progress has been achieved recently to optimize DNP performance at high magnetic fields in solid-state samples, mostly by utilizing the solid or the cross effect. In liquids, only the Overhauser mechanism is active, which exhibits a DNP field profile matching the EPR line shape of the radical, distinguishable from other DNP mechanisms. Here, we observe DNP enhancements with a field profile indicative of the solid effect and thermal mixing at ∼320 K and a magnetic field of 9.4 T in the fluid phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers doped with the radical BDPA (1,3-bis(diphenylene)-2-phenylallyl). This interesting observation might open up new perspectives for DNP applications in macromolecular systems at ambient temperatures.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article