Your browser doesn't support javascript.
loading
A Machine Learning Model Based on Tumor and Immune Biomarkers to Predict Undetectable MRD and Survival Outcomes in Multiple Myeloma.
Guerrero, Camila; Puig, Noemi; Cedena, Maria-Teresa; Goicoechea, Ibai; Perez, Cristina; Garcés, Juan-José; Botta, Cirino; Calasanz, Maria-Jose; Gutierrez, Norma C; Martin-Ramos, Maria-Luisa; Oriol, Albert; Rios, Rafael; Hernandez, Miguel-Teodoro; Martinez-Martinez, Rafael; Bargay, Joan; de Arriba, Felipe; Palomera, Luis; Gonzalez-Rodriguez, Ana Pilar; Mosquera-Orgueira, Adrian; Gonzalez-Perez, Marta-Sonia; Martinez-Lopez, Joaquin; Lahuerta, Juan-José; Rosiñol, Laura; Blade, Joan; Mateos, Maria-Victoria; San-Miguel, Jesus F; Paiva, Bruno.
Afiliação
  • Guerrero C; Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain.
  • Puig N; Instituto de investigacion biomedica de Salamanca (IBSAL), Hospital Universitario de Salamanca Hematologia, Salamanca, Spain.
  • Cedena MT; Hospital Universitario 12 de Octubre, Madrid, Spain.
  • Goicoechea I; Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain.
  • Perez C; Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain.
  • Garcés JJ; Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain.
  • Botta C; Hematology Unit, Department of Oncology, Annunziata Hospital, Cosenza, Italy.
  • Calasanz MJ; Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain.
  • Gutierrez NC; Instituto de investigacion biomedica de Salamanca (IBSAL), Hospital Universitario de Salamanca Hematologia, Salamanca, Spain.
  • Martin-Ramos ML; Hospital Universitario 12 de Octubre, Madrid, Spain.
  • Oriol A; Institut Catala d'Oncologia L'Hospitalet, Barcelona, Spain.
  • Rios R; Hospital Universitario Virgen de las Nieves, Instituto de Investigacion Biosanitaria, Granada, Spain.
  • Hernandez MT; Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain.
  • Martinez-Martinez R; Hospital Clinico Universitario San Carlos, Madrid, Spain.
  • Bargay J; Hospital Universitario Son Llatzer, Institut d' investigacio Illes Balears (IdISBa), Palma de Mallorca, Spain.
  • de Arriba F; Hospital Morales Meseguer, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain.
  • Palomera L; Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain.
  • Gonzalez-Rodriguez AP; Hospital Central de Asturias, Oviedo, Spain.
  • Mosquera-Orgueira A; Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain.
  • Gonzalez-Perez MS; Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain.
  • Martinez-Lopez J; Hospital Universitario 12 de Octubre, Madrid, Spain.
  • Lahuerta JJ; Hospital Universitario 12 de Octubre, Madrid, Spain.
  • Rosiñol L; Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
  • Blade J; Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
  • Mateos MV; Instituto de investigacion biomedica de Salamanca (IBSAL), Hospital Universitario de Salamanca Hematologia, Salamanca, Spain.
  • San-Miguel JF; Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain.
  • Paiva B; Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369, Pamplona, Spain.
Clin Cancer Res ; 28(12): 2598-2609, 2022 06 13.
Article em En | MEDLINE | ID: mdl-35063966
PURPOSE: Undetectable measurable residual disease (MRD) is a surrogate of prolonged survival in multiple myeloma. Thus, treatment individualization based on the probability of a patient achieving undetectable MRD with a singular regimen could represent a new concept toward personalized treatment, with fast assessment of its success. This has never been investigated; therefore, we sought to define a machine learning model to predict undetectable MRD at the onset of multiple myeloma. EXPERIMENTAL DESIGN: This study included 487 newly diagnosed patients with multiple myeloma. The training (n = 152) and internal validation cohorts (n = 149) consisted of 301 transplant-eligible patients with active multiple myeloma enrolled in the GEM2012MENOS65 trial. Two external validation cohorts were defined by 76 high-risk transplant-eligible patients with smoldering multiple myeloma enrolled in the Grupo Español de Mieloma(GEM)-CESAR trial, and 110 transplant-ineligible elderly patients enrolled in the GEM-CLARIDEX trial. RESULTS: The most effective model to predict MRD status resulted from integrating cytogenetic [t(4;14) and/or del(17p13)], tumor burden (bone marrow plasma cell clonality and circulating tumor cells), and immune-related biomarkers. Accurate predictions of MRD outcomes were achieved in 71% of cases in the GEM2012MENOS65 trial (n = 214/301) and 72% in the external validation cohorts (n = 134/186). The model also predicted sustained MRD negativity from consolidation onto 2 years maintenance (GEM2014MAIN). High-confidence prediction of undetectable MRD at diagnosis identified a subgroup of patients with active multiple myeloma with 80% and 93% progression-free and overall survival rates at 5 years. CONCLUSIONS: It is possible to accurately predict MRD outcomes using an integrative, weighted model defined by machine learning algorithms. This is a new concept toward individualized treatment in multiple myeloma. See related commentary by Pawlyn and Davies, p. 2482.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mieloma Múltiplo Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mieloma Múltiplo Idioma: En Ano de publicação: 2022 Tipo de documento: Article