Your browser doesn't support javascript.
loading
Co-MnO2 Nanorods for High-Performance Sodium/Potassium-Ion Batteries and Highly Conductive Gel-Type Supercapacitors.
Han, Jun; Li, Dian-Sen; Jiang, Lei; Fang, Dai-Ning.
Afiliação
  • Han J; Key Laboratory of Bio-Inspired Smppart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China.
  • Li DS; Key Laboratory of Bio-Inspired Smppart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China.
  • Jiang L; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China.
  • Fang DN; Key Laboratory of Bio-Inspired Smppart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China.
Adv Sci (Weinh) ; 9(9): e2105510, 2022 Mar.
Article em En | MEDLINE | ID: mdl-35083883
ABSTRACT
Manganese dioxide (MnO2 ) is considered as a strong candidate in the field of new-generation electronic equipment. Herein, Co-MnO2 has excellent electrochemical properties in tests as the cathode electrode of sodium-ion batteries and potassium-ion batteries. The rate performance remains at 50.2 mAh g-1 at 200 mA g-1 for sodium-ion batteries. X-ray diffraction (XRD) is utilized to evaluate the crystal structure transition from Co0.2 -MnO2 to NaMnO2 with discharge to 1 V, proving that Co-doping does indeed facilitate the acceleration of ion transport and support layer spacing to stabilize the structure of MnO2 . Subsequently, highly conductive (0.0848 S cm-1 ) gel-type supercapacitors are prepared by combining Co0.2 -MnO2 , potassium hydroxide (KOH), and poly(vinyl alcohol) (PVA) together. Co0.2 -MnO2 provides capacitive behavior and strengthens the hydrogen bonds between molecules. KOH acts as an ion crosslinker to enhance hydrogen bond and as electrolyte to transport ions. 5 wt% Co0.2 -MnO2 @KOH/PVA has superb mechanical endurance, appreciable electrical conductivity, and ideal capacitive behavior. The quasi-solid-state supercapacitor demonstrates stabilized longevity (86.5% at 0.2 mA cm-3 after 500 cycles), which can greatly promote the integration of flexible energy storage fabric devices.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article