Your browser doesn't support javascript.
loading
Boolean function metrics can assist modelers to check and choose logical rules.
Zobolas, John; Monteiro, Pedro T; Kuiper, Martin; Flobak, Åsmund.
Afiliação
  • Zobolas J; Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. Electronic address: bblodfon@gmail.com.
  • Monteiro PT; Department of Computer Science and Engineering, Instituto Superior Técnico (IST) - Universidade de Lisboa, Lisbon, Portugal; INESC-ID, Lisbon, Portugal.
  • Kuiper M; Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
  • Flobak Å; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; The Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
J Theor Biol ; 538: 111025, 2022 04 07.
Article em En | MEDLINE | ID: mdl-35085537
ABSTRACT
Computational models of biological processes provide one of the most powerful methods for a detailed analysis of the mechanisms that drive the behavior of complex systems. Logic-based modeling has enhanced our understanding and interpretation of those systems. Defining rules that determine how the output activity of biological entities is regulated by their respective inputs has proven to be challenging. Partly this is because of the inherent noise in data that allows multiple model parameterizations to fit the experimental observations, but some of it is also due to the fact that models become increasingly larger, making the use of automated tools to assemble the underlying rules indispensable. We present several Boolean function metrics that provide modelers with the appropriate framework to analyze the impact of a particular model parameterization. We demonstrate the link between a semantic characterization of a Boolean function and its consistency with the model's underlying regulatory structure. We further define the properties that outline such consistency and show that several of the Boolean functions under study violate them, questioning their biological plausibility and subsequent use. We also illustrate that regulatory functions can have major differences with regard to their asymptotic output behavior, with some of them being biased towards specific Boolean outcomes when others are dependent on the ratio between activating and inhibitory regulators. Application results show that in a specific signaling cancer network, the function bias can be used to guide the choice of logical operators for a model that matches data observations. Moreover, graph analysis indicates that commonly used Boolean functions become more biased with increasing numbers of regulators, supporting the idea that rule specification can effectively determine regulatory outcome despite the complex dynamics of biological networks.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Benchmarking Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Benchmarking Idioma: En Ano de publicação: 2022 Tipo de documento: Article