Your browser doesn't support javascript.
loading
Next Evolution in Organ-Scale Biofabrication: Bioresin Design for Rapid High-Resolution Vat Polymerization.
Murphy, Caroline A; Lim, Khoon S; Woodfield, Tim B F.
Afiliação
  • Murphy CA; Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, 8011, New Zealand.
  • Lim KS; Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, 8011, New Zealand.
  • Woodfield TBF; Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, 8011, New Zealand.
Adv Mater ; 34(20): e2107759, 2022 May.
Article em En | MEDLINE | ID: mdl-35128736
The field of bioprinting has made significant advancements in recent years and allowed for the precise deposition of biomaterials and cells. However, within this field lies a major challenge, which is developing high resolution constructs, with complex architectures. In an effort to overcome these challenges a biofabrication technique known as vat polymerization is being increasingly investigated due to its high fabrication accuracy and control of resolution (µm scale). Despite the progress made in developing hydrogel precursors for bioprinting techniques, such as extrusion-based bioprinting, there is a major lack in developing hydrogel precursor bioresins for vat polymerization. This is due to the specific unique properties and characteristics required for vat polymerization, from lithography to the latest volumetric printing. This is of major concern as the shortage of bioresins available has a significant impact on progressing this technology and exploring its full potential, including speed, resolution, and scale. Therefore, this review discusses the key requirements that need to be addressed in successfully developing a bioresin. The influence of monomer architecture and bioresin composition on printability is described, along with key fundamental parameters that can be altered to increase printing accuracy. Finally, recent advancements in bioresins are discussed together with future directions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Engenharia Tecidual / Bioimpressão Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Engenharia Tecidual / Bioimpressão Idioma: En Ano de publicação: 2022 Tipo de documento: Article