Your browser doesn't support javascript.
loading
Bayesian Multi-Targets Strategy to Track Apis mellifera Movements at Colony Level.
Oliveira, Jordão N; Santos, Jônatas C; Viteri Jumbo, Luis O; Almeida, Carlos H S; Toledo, Pedro F S; Rezende, Sarah M; Haddi, Khalid; Santana, Weyder C; Bessani, Michel; Achcar, Jorge A; Oliveira, Eugenio E; Maciel, Carlos D.
Afiliação
  • Oliveira JN; Laboratório de Processamento de Sinais, Departamento de Engenharia Elétrica, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil.
  • Santos JC; Laboratório de Processamento de Sinais, Departamento de Engenharia Elétrica, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil.
  • Viteri Jumbo LO; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
  • Almeida CHS; Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil.
  • Toledo PFS; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
  • Rezende SM; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
  • Haddi K; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
  • Santana WC; Departamento de Entomologia, Universidade Federal de Lavras, Lavras 37200-900, MG, Brazil.
  • Bessani M; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
  • Achcar JA; Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
  • Oliveira EE; Department of Social Medicine, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil.
  • Maciel CD; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
Insects ; 13(2)2022 Feb 09.
Article em En | MEDLINE | ID: mdl-35206754
Interactive movements of bees facilitate the division and organization of collective tasks, notably when they need to face internal or external environmental challenges. Here, we present a Bayesian and computational approach to track the movement of several honey bee, Apis mellifera, workers at colony level. We applied algorithms that combined tracking and Kernel Density Estimation (KDE), allowing measurements of entropy and Probability Distribution Function (PDF) of the motion of tracked organisms. We placed approximately 200 recently emerged and labeled bees inside an experimental colony, which consists of a mated queen, approximately 1000 bees, and a naturally occurring beehive background. Before release, labeled bees were fed for one hour with uncontaminated diets or diets containing a commercial mixture of synthetic fungicides (thiophanate-methyl and chlorothalonil). The colonies were filmed (12 min) at the 1st hour, 5th and 10th days after the bees' release. Our results revealed that the algorithm tracked the labeled bees with great accuracy. Pesticide-contaminated colonies showed anticipated collective activities in peripheral hive areas, far from the brood area, and exhibited reduced swarm entropy and energy values when compared to uncontaminated colonies. Collectively, our approach opens novel possibilities to quantify and predict potential alterations mediated by pollutants (e.g., pesticides) at the bee colony-level.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article