Your browser doesn't support javascript.
loading
Sox9 Promotes Cardiomyocyte Apoptosis After Acute Myocardial Infarction by Promoting miR-223-3p and Inhibiting MEF2C.
Rui, Lu; Liu, Rui; Jiang, Huaping; Liu, Kaiyang.
Afiliação
  • Rui L; Fuwai Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, No.167 Beilishi Road, Xicheng District, Beijing, 100037, China. drruilu0607@163.com.
  • Liu R; Fuwai Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, No.167 Beilishi Road, Xicheng District, Beijing, 100037, China.
  • Jiang H; Fuwai Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, No.167 Beilishi Road, Xicheng District, Beijing, 100037, China.
  • Liu K; Fuwai Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, No.167 Beilishi Road, Xicheng District, Beijing, 100037, China.
Mol Biotechnol ; 64(8): 902-913, 2022 Aug.
Article em En | MEDLINE | ID: mdl-35229259
Acute myocardial infarction (AMI) is a severe and even fatal cardiovascular disease. The effect of transcription factors on AMI is intensively explored. Our experiment attempts to probe the role of Sox9 in cardiomyocyte apoptosis after AMI. AMI cell model was established in AC16 cells by hypoxia treatment. Cell viability and apoptosis were assessed. Then, the levels of BAX, Bcl-2, Sox9, miR-223-3p, and MEF2C were detected. The binding relation between Sox9 and miR-223-3p and between miR-223-3p and MEF2C was verified. The expression of miR-223-3p was upregulated using the miR-223-3p mimic, and collaborative experiments were conducted as si-Sox9 or si-MEF2C was transfected into cells to inhibit the expression of Sox9 or MEF2C. Sox9 was highly expressed in cardiomyocyte apoptosis after hypoxia, while Sox9 silencing protected hypoxia-treated cardiomyocytes from apoptosis by enhancing cell viability, quenching apoptosis, and reducing activity of caspase-3 and caspase-9. Essentially, Sox9 bound to the miR-223-3p promoter region to upregulate its expression. miR-223-3p targeted MEF2C transcription. miR-223-3p overexpression and MEF2C silencing could counteract the suppressive role of Sox9 silencing in hypoxia-treated cardiomyocyte apoptosis. Sox9 exacerbated hypoxia-induced cardiomyocyte apoptosis by promoting miR-223-3p expression and inhibiting MEF2C transcription.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: MicroRNAs / Fatores de Transcrição SOX9 / Fatores de Transcrição MEF2 / Infarto do Miocárdio Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: MicroRNAs / Fatores de Transcrição SOX9 / Fatores de Transcrição MEF2 / Infarto do Miocárdio Idioma: En Ano de publicação: 2022 Tipo de documento: Article