Your browser doesn't support javascript.
loading
Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host.
D'Angelo, Francesca; Fernández-Fueyo, Elena; Garcia, Pierre Simon; Shomar, Helena; Pelosse, Martin; Manuel, Rita Rebelo; Büke, Ferhat; Liu, Siyi; van den Broek, Niels; Duraffourg, Nicolas; de Ram, Carol; Pabst, Martin; Bouveret, Emmanuelle; Gribaldo, Simonetta; Py, Béatrice; Ollagnier de Choudens, Sandrine; Barras, Frédéric; Bokinsky, Gregory.
Afiliação
  • D'Angelo F; Unit Stress Adaptation and Metabolism of Enterobacteria, Department of Microbiology, Université de Paris, UMR CNRS 2001, Institut Pasteur, Paris, France.
  • Fernández-Fueyo E; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
  • Garcia PS; Unit Stress Adaptation and Metabolism of Enterobacteria, Department of Microbiology, Université de Paris, UMR CNRS 2001, Institut Pasteur, Paris, France.
  • Shomar H; Institut Pasteur, Université de Paris, CNRS UMR6047, Evolutionary Biology of the Microbial Cell, Department of Microbiology, Paris, France.
  • Pelosse M; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
  • Manuel RR; Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France.
  • Büke F; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
  • Liu S; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
  • van den Broek N; Aix-Marseille Université-CNRS, Laboratoire de Chimie Bactérienne UMR 7283, Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies Biotechnologie, Marseille, France.
  • Duraffourg N; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
  • de Ram C; Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France.
  • Pabst M; Department of Biotechnology, Delft University of Technology, Delft, Netherlands.
  • Bouveret E; Department of Biotechnology, Delft University of Technology, Delft, Netherlands.
  • Gribaldo S; Unit Stress Adaptation and Metabolism of Enterobacteria, Department of Microbiology, Université de Paris, UMR CNRS 2001, Institut Pasteur, Paris, France.
  • Py B; Institut Pasteur, Université de Paris, CNRS UMR6047, Evolutionary Biology of the Microbial Cell, Department of Microbiology, Paris, France.
  • Ollagnier de Choudens S; Aix-Marseille Université-CNRS, Laboratoire de Chimie Bactérienne UMR 7283, Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies Biotechnologie, Marseille, France.
  • Barras F; Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France.
  • Bokinsky G; Unit Stress Adaptation and Metabolism of Enterobacteria, Department of Microbiology, Université de Paris, UMR CNRS 2001, Institut Pasteur, Paris, France.
Elife ; 112022 03 04.
Article em En | MEDLINE | ID: mdl-35244541
ABSTRACT
Iron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and highly versatile. However, Fe-S proteins and enzymes are often inactive outside their native host species. We sought to systematically investigate the compatibility of Fe-S networks with non-native Fe-S enzymes. By using collections of Fe-S enzyme orthologs representative of the entire range of prokaryotic diversity, we uncovered a striking correlation between phylogenetic distance and probability of functional expression. Moreover, coexpression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be supported by the foreign host. We also find that Fe-S enzymes that require specific electron carrier proteins are rarely functionally expressed unless their taxon-specific reducing partners are identified and co-expressed. We demonstrate how these principles can be applied to improve the activity of a radical S-adenosyl methionine(rSAM) enzyme from a Streptomyces antibiotic biosynthesis pathway in Escherichia coli. Our results clarify how oxygen sensitivity and incompatibilities with foreign Fe-S and electron transfer networks each impede heterologous activity. In particular, identifying compatible electron transfer proteins and heterologous Fe-S biogenesis pathways may prove essential for engineering functional Fe-S enzyme-dependent pathways.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Escherichia coli / Proteínas Ferro-Enxofre Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Escherichia coli / Proteínas Ferro-Enxofre Idioma: En Ano de publicação: 2022 Tipo de documento: Article