Your browser doesn't support javascript.
loading
Differential synthesis of novel small protein times Salmonella virulence program.
Salvail, Hubert; Choi, Jeongjoon; Groisman, Eduardo A.
Afiliação
  • Salvail H; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America.
  • Choi J; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America.
  • Groisman EA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America.
PLoS Genet ; 18(3): e1010074, 2022 03.
Article em En | MEDLINE | ID: mdl-35245279
Gene organization in operons enables concerted transcription of functionally related genes and efficient control of cellular processes. Typically, an operon is transcribed as a polycistronic mRNA that is translated into corresponding proteins. Here, we identify a bicistronic operon transcribed as two mRNAs, yet only one allows translation of both genes. We establish that the novel gene ugtS forms an operon with virulence gene ugtL, an activator of the master virulence regulatory system PhoP/PhoQ in Salmonella enterica serovar Typhimurium. Only the longer ugtSugtL mRNA carries the ugtS ribosome binding site and therefore allows ugtS translation. Inside macrophages, the ugtSugtL mRNA species allowing translation of both genes is produced hours before that allowing translation solely of ugtL. The small protein UgtS controls the kinetics of PhoP phosphorylation by antagonizing UgtL activity, preventing premature activation of a critical virulence program. Moreover, S. enterica serovars that infect cold-blooded animals lack ugtS. Our results establish how foreign gene control of ancestral regulators enables pathogens to time their virulence programs.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Regulação Bacteriana da Expressão Gênica Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Regulação Bacteriana da Expressão Gênica Idioma: En Ano de publicação: 2022 Tipo de documento: Article