Your browser doesn't support javascript.
loading
Pushing Stoichiometries of Lithium-Rich Layered Oxides Beyond Their Limits.
Celeste, Arcangelo; Brescia, Rosaria; Greco, Giorgia; Torelli, Piero; Mauri, Silvia; Silvestri, Laura; Pellegrini, Vittorio; Brutti, Sergio.
Afiliação
  • Celeste A; Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova, Italy.
  • Brescia R; Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
  • Greco G; Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
  • Torelli P; Dipartimento di Chimica, Università di Roma La Sapienza, p.le Aldo Moro 5, 00185 Roma, Italy.
  • Mauri S; Laboratorio TASC, Istituto Officina dei Materiali (IOM)-CNR, Area Science Park, S.S.14, km 163.5, I-34149 Trieste, Italy.
  • Silvestri L; Laboratorio TASC, Istituto Officina dei Materiali (IOM)-CNR, Area Science Park, S.S.14, km 163.5, I-34149 Trieste, Italy.
  • Pellegrini V; Dipartimento di Fisica, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy.
  • Brutti S; Dipartimento di Tecnologie Energetiche e Fonti Rinnovabili, ENEA C.R. Casaccia, via Anguillarese 301, 00123 Roma, Italy.
ACS Appl Energy Mater ; 5(2): 1905-1913, 2022 Feb 28.
Article em En | MEDLINE | ID: mdl-35252774
ABSTRACT
Lithium-rich layered oxides (LRLOs) are opening unexplored frontiers for high-capacity/high-voltage positive electrodes in Li-ion batteries (LIBs) to meet the challenges of green and safe transportation as well as cheap and sustainable stationary energy storage from renewable sources. LRLOs exploit the extra lithiation provided by the Li1.2TM0.8O2 stoichiometries (TM = a blend of transition metals with a moderate cobalt content) achievable by a layered structure to disclose specific capacities beyond 200-250 mA h g-1 and working potentials in the 3.4-3.8 V range versus Li. Here, we demonstrate an innovative paradigm to extend the LRLO concept. We have balanced the substitution of cobalt in the transition-metal layer of the lattice with aluminum and lithium, pushing the composition of LRLO to unexplored stoichiometries, that is, Li1.2+x (Mn,Ni,Co,Al)0.8-x O2-δ. The fine tuning of the composition of the metal blend results in an optimized layered material, that is, Li1.28Mn0.54Ni0.13Co0.02Al0.03O2-δ, with outstanding electrochemical performance in full LIBs, improved environmental benignity, and reduced manufacturing costs compared to the state-of-the-art.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article