3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR T cells.
Cell Stem Cell
; 29(4): 515-527.e8, 2022 04 07.
Article
em En
| MEDLINE
| ID: mdl-35278370
Unlimited generation of chimeric antigen receptor (CAR) T cells from human-induced pluripotent stem cells (iPSCs) is an attractive approach for "off-the-shelf" CAR T cell immunotherapy. Approaches to efficiently differentiate iPSCs into canonical αß T cell lineages, while maintaining CAR expression and functionality, however, have been challenging. We report that iPSCs reprogramed from CD62L+ naive and memory T cells followed by CD19-CAR engineering and 3D-organoid system differentiation confers products with conventional CD8αß-positive CAR T cell characteristics. Expanded iPSC CD19-CAR T cells showed comparable antigen-specific activation, degranulation, cytotoxicity, and cytokine secretion compared with conventional CD19-CAR T cells and maintained homogeneous expression of the TCR derived from the initial clone. iPSC CD19-CAR T cells also mediated potent antitumor activity in vivo, prolonging survival of mice with CD19+ human tumor xenografts. Our study establishes feasible methodologies to generate highly functional CAR T cells from iPSCs to support the development of "off-the-shelf" manufacturing strategies.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Células-Tronco Pluripotentes Induzidas
/
Receptores de Antígenos Quiméricos
Idioma:
En
Ano de publicação:
2022
Tipo de documento:
Article