Your browser doesn't support javascript.
loading
CHAIMELEON Project: Creation of a Pan-European Repository of Health Imaging Data for the Development of AI-Powered Cancer Management Tools.
Bonmatí, Luis Martí; Miguel, Ana; Suárez, Amelia; Aznar, Mario; Beregi, Jean Paul; Fournier, Laure; Neri, Emanuele; Laghi, Andrea; França, Manuela; Sardanelli, Francesco; Penzkofer, Tobias; Lambin, Phillipe; Blanquer, Ignacio; Menzel, Marion I; Seymour, Karine; Figueiras, Sergio; Krischak, Katharina; Martínez, Ricard; Mirsky, Yisroel; Yang, Guang; Alberich-Bayarri, Ángel.
Afiliação
  • Bonmatí LM; Medical Imaging Department, La Fe University and Polytechnic Hospital & Biomedical Imaging Research Group Grupo de Investigación Biomédica en Imagen (GIBI230) at La Fe University and Polytechnic Hospital and Health Research Institute, Valencia, Spain.
  • Miguel A; Medical Imaging Department, La Fe University and Polytechnic Hospital & Biomedical Imaging Research Group Grupo de Investigación Biomédica en Imagen (GIBI230) at La Fe University and Polytechnic Hospital and Health Research Institute, Valencia, Spain.
  • Suárez A; Matical Innovation SL, Madrid, Spain.
  • Aznar M; Matical Innovation SL, Madrid, Spain.
  • Beregi JP; Collège des enseignants en radiologie de France, Paris, France.
  • Fournier L; Collège des enseignants en radiologie de France, Paris, France.
  • Neri E; Diagnostic Radiology 3, Department of Translational Research, University of Pisa, Pisa, Italy.
  • Laghi A; Medicina Traslazionale e Oncologia, Sant Andrea Sapienza Rome, Rome, Italy.
  • França M; Department of Radiology, Centro Hospitalar Universitário do Porto, Porto, Portugal.
  • Sardanelli F; Servizio di Diagnostica per Immagini, "Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Donato, Milanese, Italy.
  • Penzkofer T; Department of Radiology, CHARITÉ-Universitätsmedizin Berlin, Berlin, Germany.
  • Lambin P; Department of Precision Medicine, Maastricht University, Maastricht, Netherlands.
  • Blanquer I; Computing Science Department, Universitat Politècnica de València, València, Spain.
  • Menzel MI; GE Healthcare, München, Germany.
  • Seymour K; Department of Physics, Technical University of Munich, Garching, Germany.
  • Figueiras S; Medexprim, Labège, France.
  • Krischak K; Bahia Software S.L.U., Coruña, Spain.
  • Martínez R; European Institute for Biomedical Imaging Research, EIBIR gemeinnützige GmbH, Vienna, Austria.
  • Mirsky Y; Departamento de Derecho Constitucional, Ciencia Política y Administración, Universitat de València, València, Spain.
  • Yang G; Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
  • Alberich-Bayarri Á; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Front Oncol ; 12: 742701, 2022.
Article em En | MEDLINE | ID: mdl-35280732
The CHAIMELEON project aims to set up a pan-European repository of health imaging data, tools and methodologies, with the ambition to set a standard and provide resources for future AI experimentation for cancer management. The project is a 4 year long, EU-funded project tackling some of the most ambitious research in the fields of biomedical imaging, artificial intelligence and cancer treatment, addressing the four types of cancer that currently have the highest prevalence worldwide: lung, breast, prostate and colorectal. To allow this, clinical partners and external collaborators will populate the repository with multimodality (MR, CT, PET/CT) imaging and related clinical data. Subsequently, AI developers will enable a multimodal analytical data engine facilitating the interpretation, extraction and exploitation of the information stored at the repository. The development and implementation of AI-powered pipelines will enable advancement towards automating data deidentification, curation, annotation, integrity securing and image harmonization. By the end of the project, the usability and performance of the repository as a tool fostering AI experimentation will be technically validated, including a validation subphase by world-class European AI developers, participating in Open Challenges to the AI Community. Upon successful validation of the repository, a set of selected AI tools will undergo early in-silico validation in observational clinical studies coordinated by leading experts in the partner hospitals. Tool performance will be assessed, including external independent validation on hallmark clinical decisions in response to some of the currently most important clinical end points in cancer. The project brings together a consortium of 18 European partners including hospitals, universities, R&D centers and private research companies, constituting an ecosystem of infrastructures, biobanks, AI/in-silico experimentation and cloud computing technologies in oncology.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article