Your browser doesn't support javascript.
loading
Sensitivity enhancement of nonlinear refractive index measurement by Gaussian-Bessel beam assisted z-scan method.
Opt Express ; 30(5): 7291-7298, 2022 Feb 28.
Article em En | MEDLINE | ID: mdl-35299493
Characterizing the nonlinear optical properties of numerous materials plays a prerequisite role in nonlinear imaging and quantum sensing. Here, we present the evaluation of the nonlinear optical properties of Rb vapor by the Gaussian-Bessel beam assisted z-scan method. Owed to the concentrated energy in the central waist spot and the constant intensity of the beam distribution, the Gaussian-Bessel beam enables enhanced sensitivity for nonlinear refractive index measurement. The nonlinear self-focusing and self-defocusing effects of the Rb vapor are illustrated in the case of blue and red frequency detunings from 5S1/2 - 5P3/2 transition, respectively. The complete images of the evolution of nonlinear optical properties with laser power and frequency detuning are acquired. Furthermore, the nonlinear refractive index n2 with a large scale of 10-6 cm2/W is determined from the measured transmittance peak-to-valley difference of z-scan curves, which is enhanced by a factor of ∼ 1.73 compared to the result of a equivalent Gaussian beam. Our research provides an effective method for measuring nonlinear refractive index, which will considerably enrich the application range of nonlinear material.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article