Your browser doesn't support javascript.
loading
Synthesis of a highly recoverable 3D MnO2/rGO hybrid aerogel for efficient adsorptive separation of pharmaceutical residue.
Hiew, Billie Yan Zhang; Tee, Wan Ting; Loh, Nicholas Yung Li; Lai, Kar Chiew; Hanson, Svenja; Gan, Suyin; Thangalazhy-Gopakumar, Suchithra; Lee, Lai Yee.
Afiliação
  • Hiew BYZ; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
  • Tee WT; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
  • Loh NYL; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
  • Lai KC; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
  • Hanson S; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
  • Gan S; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
  • Thangalazhy-Gopakumar S; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
  • Lee LY; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.. Electronic address: Lai-Yee.Lee@nottingham.edu.my.
J Environ Sci (China) ; 118: 194-203, 2022 Aug.
Article em En | MEDLINE | ID: mdl-35305768
ABSTRACT
Water contamination by non-steroidal anti-inflammatory drugs, such as acetaminophen, is an emerging ecological concern. In this study, a new three-dimensional manganese dioxide-engrafted reduced graphene oxide (3D MnO2/rGO) hybrid aerogel was developed for acetaminophen sequestration. The synthesis involved firstly the self-assembly of GO aerogel, followed by thermal reduction and in-situ MnO2 growth by redox-reaction. The aerogel demonstrated interlinked planes with smooth surfaces deposited with MnO2 nanospheres and pores of 138.4 - 235.3 µm width. The influences of adsorbent dosage, initial pH, acetaminophen concentration, temperature and contact time were investigated. It was determined that the adsorption of acetaminophen occurred on uniform sorption sites in the aerogel, as suggested by the best fit of data to the Langmuir isotherm, yielding a maximum adsorption capacity of 252.87 mg/g. This highest adsorption performance of the 3D MnO2/rGO aerogel was attained at a dosage of 0.6 g/L, initial pH of 6.2 and temperature of 40°C. The process kinetics were in-line with the pseudo-first-order and pseudo-second-order kinetics at 10 and 20 - 500 mg/L concentrations, respectively. Thermodynamic assay showed the spontaneity and endothermicity features of the 3D MnO2/rGO-acetaminophen system. The acetaminophen adsorption mechanisms were mainly hydrogen bonding and pore entrapment. Moreover, the as-synthesised aerogel was effectively regenerated using acetone and re-utilised in four adsorption-desorption cycles. Overall, the results highly recommend the implementation of the 3D MnO2/rGO hybrid aerogel for purification of wastewater polluted by acetaminophen residue.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Óxidos / Resíduos de Drogas / Compostos de Manganês / Purificação da Água Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Óxidos / Resíduos de Drogas / Compostos de Manganês / Purificação da Água Idioma: En Ano de publicação: 2022 Tipo de documento: Article