Your browser doesn't support javascript.
loading
Syringic and ascorbic acids prevent NDMA-induced pulmonary fibrogenesis, inflammation, apoptosis, and oxidative stress through the regulation of PI3K-Akt/PKB-mTOR-PTEN signaling pathway.
Somade, Oluwatobi T; Adeyi, Olubisi E; Ajayi, Babajide O; Asunde, Osiro O; Iloh, Precious D; Adesanya, Adedayo A; Babalola, Olanrewaju I; Folorunsho, Oluwaseyi T; Olakunle, Deborah A; Lawal, Opeyemi F.
Afiliação
  • Somade OT; Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
  • Adeyi OE; Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
  • Ajayi BO; Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria.
  • Asunde OO; Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
  • Iloh PD; Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
  • Adesanya AA; Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
  • Babalola OI; Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
  • Folorunsho OT; Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
  • Olakunle DA; Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
  • Lawal OF; Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
Metabol Open ; 14: 100179, 2022 Jun.
Article em En | MEDLINE | ID: mdl-35340717
Idiopathic lung fibrosis (ILF) is a severe and life threatening lung disorder that is characterized by scarring of lung tissue, leading to thickening and stiffening of affected areas. This study looked at the role played by PI3K-Akt/PKB-mToR signaling pathway in the pathogenesis of N-Nitrosodimethylamine (NDMA)-induced lung fibrotic injury, and the effects of syringic acid (SYR) and ascorbic acid (ASC) treatments in male Wistar rats. Pulmonary fibrosis was induced by intraperitoneal injection of 10 mg/kg NDMA once daily, thrice (consecutively) a week for four weeks, and this condition was treated daily with SYR (50 mg/kg) and ASC (100 mg/kg) acids orally for four weeks. Fibrogenesis, following NDMA administration was marked by a significant increase in collagen-1 and α-SMA levels, while oxidative stress was marked by a significant decrease in GSH level, GST, GPx, CAT, and SOD activities. Also, NDMA significantly increased lung Bax, p53, caspase-3, TNF-α, IL-1ß, NFkB, and decreased Bcl-2, mdm2, cyclin D1 and Nrf-2 levels. Looking at the PI3K-Akt-mTOR signaling pathway, NDMA administration significantly activated lung PI3K, Akt, and mTOR, and deactivated PTEN, FoxO1 and TSC2. Treatments with SYR and ASC significantly reduced oxidative stress by restoring the antioxidant systems via Nrf2 activation, decreased the levels of inflammatory markers through inhibition of NFkB, downregulated p53, Bax, and caspase-3 via up-regulation of mdm2 and cyclin D1. SYR and ASC also regulated the PI3K-Akt-mTOR signaling pathway via the deactivation of PI3K, Akt, and mTOR, and up-regulation of PTEN, FoxO1 and TSC2. Overall, SYR and ASC modulate the PI3K-Akt-mTOR signaling pathway via inhibition of oxidative stress, inflammation and apoptosis in NDMA-induced lung fibrosis.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article