Your browser doesn't support javascript.
loading
Z-α1-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state.
Chambers, Joseph E; Zubkov, Nikita; Kubánková, Markéta; Nixon-Abell, Jonathon; Mela, Ioanna; Abreu, Susana; Schwiening, Max; Lavarda, Giulia; López-Duarte, Ismael; Dickens, Jennifer A; Torres, Tomás; Kaminski, Clemens F; Holt, Liam J; Avezov, Edward; Huntington, James A; George-Hyslop, Peter St; Kuimova, Marina K; Marciniak, Stefan J.
Afiliação
  • Chambers JE; Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
  • Zubkov N; Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
  • Kubánková M; Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, UK.
  • Nixon-Abell J; Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
  • Mela I; Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
  • Abreu S; Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
  • Schwiening M; Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
  • Lavarda G; Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain.
  • López-Duarte I; Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain.
  • Dickens JA; Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
  • Torres T; Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain.
  • Kaminski CF; IMDEA Nanociencia, Campus de Cantoblanco, Madrid 28049, Spain.
  • Holt LJ; Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
  • Avezov E; Institute for Systems Genetics, New York University Grossman School of Medicine, 435 E 30th St, New York, NY 10016, USA.
  • Huntington JA; Department of Clinical Neurosciences and UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK.
  • George-Hyslop PS; Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
  • Kuimova MK; Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
  • Marciniak SJ; Department of Medicine (Neurology), Temerty Faculty of Medicine, University of Toronto, University Health Network, Toronto, ON M5T 0S8, Canada.
Sci Adv ; 8(14): eabm2094, 2022 Apr 08.
Article em En | MEDLINE | ID: mdl-35394846
ABSTRACT
Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α1-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α1-antitrypsin polymers undergo a liquidsolid phase transition, forming a protein matrix that retards mobility of ER proteins by size-dependent molecular filtration. The Z-α1-antitrypsin phase transition is promoted during ER stress by an ATF6-mediated unfolded protein response. Furthermore, the ER chaperone calreticulin promotes Z-α1-antitrypsin solidification and increases protein matrix stiffness. Single-particle tracking reveals that solidification initiates in cells with normal ER morphology, previously assumed to represent a healthy pool. We show that Z-α1-antitrypsin-induced hypersensitivity to ER stress can be explained by immobilization of ER chaperones within the polymer matrix. This previously unidentified mechanism of ER dysfunction provides a template for understanding a diverse group of related proteinopathies and identifies ER chaperones as potential therapeutic targets.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article