Your browser doesn't support javascript.
loading
Electrostatically-gated molecular rotors.
Lin, Binzhou; Karki, Ishwor; Pellechia, Perry J; Shimizu, Ken D.
Afiliação
  • Lin B; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA. shimizu@mailbox.sc.edu.
  • Karki I; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA. shimizu@mailbox.sc.edu.
  • Pellechia PJ; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA. shimizu@mailbox.sc.edu.
  • Shimizu KD; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA. shimizu@mailbox.sc.edu.
Chem Commun (Camb) ; 58(39): 5869-5872, 2022 May 12.
Article em En | MEDLINE | ID: mdl-35470822
ABSTRACT
The ability to control molecular-scale motion using electrostatic interactions was demonstrated using an N-phenylsuccinimide molecular rotor with an electrostatic pyridyl-gate. Protonation of the pyridal-gate forms stabilizing electrostatic interactions in the transition state of the bond rotation process that lowers the rotational barrier and increases the rate of rotation by two orders of magnitude. Molecular modeling and energy decomposition analysis confirm the dominant role of attractive electrostatic interactions in lowering the bond rotation transition state.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Moleculares Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Modelos Moleculares Idioma: En Ano de publicação: 2022 Tipo de documento: Article