Your browser doesn't support javascript.
loading
Toward automatic beam angle selection for pencil-beam scanning proton liver treatments: A deep learning-based approach.
Kaderka, Robert; Liu, Keng-Chi; Liu, Lawrence; VanderStraeten, Reynald; Liu, Tyng-Luh; Lee, Kuang-Min; Tu, Yi-Chin Ethan; MacEwan, Iain; Simpson, Daniel; Urbanic, James; Chang, Chang.
Afiliação
  • Kaderka R; Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, California, USA.
  • Liu KC; Department of Radiation Oncology, University of Miami, Miami, Florida, USA.
  • Liu L; Taiwan AI Labs, Taipei, Taiwan.
  • VanderStraeten R; California Protons Cancer Therapy Center, San Diego, California, USA.
  • Liu TL; Varian Medical Systems, Palo Alto, California, USA.
  • Lee KM; Taiwan AI Labs, Taipei, Taiwan.
  • Tu YE; Taiwan AI Labs, Taipei, Taiwan.
  • MacEwan I; Taiwan AI Labs, Taipei, Taiwan.
  • Simpson D; Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, California, USA.
  • Urbanic J; California Protons Cancer Therapy Center, San Diego, California, USA.
  • Chang C; Department of Radiation Medicine and Applied Sciences, University of California at San Diego, La Jolla, California, USA.
Med Phys ; 49(7): 4293-4304, 2022 Jul.
Article em En | MEDLINE | ID: mdl-35488864
ABSTRACT

BACKGROUND:

Dose deposition characteristics of proton radiation can be advantageous over photons. Proton treatment planning, however, poses additional challenges for the planners. Proton therapy is usually delivered with only a small number of beam angles, and the quality of a proton treatment plan is largely determined by the beam angles employed. Finding the optimal beam angles for a proton treatment plan requires time and experience, motivating the investigation of automatic beam angle selection methods.

PURPOSE:

A deep learning-based approach to automatic beam angle selection is proposed for the proton pencil-beam scanning treatment planning of liver lesions.

METHODS:

We cast beam-angle selection as a multi-label classification problem. To account for angular boundary discontinuity, the underlying convolution neural network is trained with the proposed Circular Earth Mover's Distance-based regularization and multi-label circular-smooth label technique. Furthermore, an analytical algorithm emulating proton treatment planners' clinical practice is employed in post-processing to improve the output of the model. Forty-nine patients that received proton liver treatments between 2017 and 2020 were randomly divided into training (n = 31), validation (n = 7), and test sets (n = 11). AI-selected beam angles were compared with those angles selected by human planners, and the dosimetric outcome was investigated by creating plans using knowledge-based treatment planning.

RESULTS:

For 7 of the 11 cases in the test set, AI-selected beam angles agreed with those chosen by human planners to within 20° (median angle difference = 10°; mean = 18.6°). Moreover, out of the total 22 beam angles predicted by the model, 15 (68%) were within 10° of the human-selected angles. The high correlation in beam angles resulted in comparable dosimetric statistics between proton treatment plans generated using AI- and human-selected angles. For the cases with beam angle differences exceeding 20°, the dosimetric analysis showed similar plan quality although with different emphases on organ-at-risk sparing.

CONCLUSIONS:

This pilot study demonstrated the feasibility of a novel deep learning-based beam angle selection technique. Testing on liver cancer patients showed that the resulting plans were clinically viable with comparable dosimetric quality to those using human-selected beam angles. In tandem with auto-contouring and knowledge-based treatment planning tools, the proposed model could represent a pathway for nearly fully automated treatment planning in proton therapy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radioterapia de Intensidade Modulada / Terapia com Prótons / Aprendizado Profundo / Fígado Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radioterapia de Intensidade Modulada / Terapia com Prótons / Aprendizado Profundo / Fígado Idioma: En Ano de publicação: 2022 Tipo de documento: Article