Your browser doesn't support javascript.
loading
High voltage vacuum-processed perovskite solar cells with organic semiconducting interlayers.
Babaei, Azin; Dreessen, Chris; Sessolo, Michele; Bolink, Henk J.
Afiliação
  • Babaei A; Instituto de Ciencia Molecular, Universidad de Valencia C/Beltrán 2 Paterna 46980 Spain michele.sessolo@uv.es.
  • Dreessen C; Instituto de Ciencia Molecular, Universidad de Valencia C/Beltrán 2 Paterna 46980 Spain michele.sessolo@uv.es.
  • Sessolo M; Instituto de Ciencia Molecular, Universidad de Valencia C/Beltrán 2 Paterna 46980 Spain michele.sessolo@uv.es.
  • Bolink HJ; Instituto de Ciencia Molecular, Universidad de Valencia C/Beltrán 2 Paterna 46980 Spain michele.sessolo@uv.es.
RSC Adv ; 10(11): 6640-6646, 2020 Feb 07.
Article em En | MEDLINE | ID: mdl-35496020
ABSTRACT
In perovskite solar cells, the choice of appropriate transport layers and electrodes is of great importance to guarantee efficient charge transport and collection, minimizing recombination losses. The possibility to sequentially process multiple layers by vacuum methods offers a tool to explore the effects of different materials and their combinations on the performance of optoelectronic devices. In this work, the effect of introducing interlayers and altering the electrode work function has been evaluated in fully vacuum-deposited perovskite solar cells. We compared the performance of solar cells employing common electron buffer layers such as bathocuproine (BCP), with other injection materials used in organic light-emitting diodes, such as lithium quinolate (Liq), as well as their combination. Additionally, high voltage solar cells were obtained using low work function metal electrodes, although with compromised stability. Solar cells with enhanced photovoltage and stability under continuous operation were obtained using BCP and BCP/Liq interlayers, resulting in an efficiency of approximately 19%, which is remarkable for simple methylammonium lead iodide absorbers.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article