Your browser doesn't support javascript.
loading
Eucalypt species drive rhizosphere bacterial and fungal community assembly but soil phosphorus availability rearranges the microbiome.
Bulgarelli, R G; Leite, M F A; de Hollander, M; Mazzafera, P; Andrade, S A L; Kuramae, E E.
Afiliação
  • Bulgarelli RG; University of Campinas, Institute of Biology, Department of Plant Biology, Campinas, SP, Brazil; Netherlands Institute of Ecology NIOO-KNAW, Department of Microbial Ecology, Wageningen, Netherlands.
  • Leite MFA; Netherlands Institute of Ecology NIOO-KNAW, Department of Microbial Ecology, Wageningen, Netherlands.
  • de Hollander M; Netherlands Institute of Ecology NIOO-KNAW, Department of Microbial Ecology, Wageningen, Netherlands.
  • Mazzafera P; University of Campinas, Institute of Biology, Department of Plant Biology, Campinas, SP, Brazil; University of São Paulo, School of Agriculture Luiz de Queiroz, Department of Crop Production, Piracicaba, SP, Brazil.
  • Andrade SAL; University of Campinas, Institute of Biology, Department of Plant Biology, Campinas, SP, Brazil. Electronic address: sardrian@unicamp.br.
  • Kuramae EE; Netherlands Institute of Ecology NIOO-KNAW, Department of Microbial Ecology, Wageningen, Netherlands; Utrecht University, Ecology and Biodiversity, Institute of Environmental Biology, Utrecht, Netherlands. Electronic address: e.kuramae@nioo.knaw.nl.
Sci Total Environ ; 836: 155667, 2022 Aug 25.
Article em En | MEDLINE | ID: mdl-35513142
ABSTRACT
Soil phosphorus (P) availability may limit plant growth and alter root-soil interactions and rhizosphere microbial community composition. The composition of the rhizosphere microbial community can also be shaped by plant genotype. In this study, we examined the rhizosphere microbial communities of young plants of 24 species of eucalypts (22 Eucalyptus and two Corymbia species) under low or sufficient soil P availability. The taxonomic diversity of the rhizosphere bacterial and fungal communities was assessed by 16S and 18S rRNA gene amplicon sequencing. The taxonomic modifications in response to low P availability were evaluated by principal component analysis, and co-inertia analysis was performed to identify associations between bacterial and fungal community structures and parameters related to plant growth and nutritional status under low and sufficient soil P availability. The sequencing results showed that while both soil P availability and eucalypt species influenced the microbial community assembly, eucalypt species was the stronger determinant. However, when the plants are subjected to low P-availability, the rhizosphere selection became strongest. In response to low P, the bacterial and fungal communities in the rhizosphere of some species showed significant changes, whereas in others remained relatively constant under low and sufficient P. Co-inertia analyses revealed a significant co-dependence between plant nutrient contents and bacterial and fungal community composition only under sufficient P. By contrast, under low P, bacterial community composition was related to plant biomass production. In conclusion, our study shows that eucalypt species identity was the main factor modulating rhizosphere microbial community composition; significant shifts due to P availability were observed only for some eucalypt species.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota / Micobioma Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota / Micobioma Idioma: En Ano de publicação: 2022 Tipo de documento: Article