Formation of submicron-sized silica patterns on flexible polymer substrates based on vacuum ultraviolet photo-oxidation.
RSC Adv
; 9(55): 32313-32322, 2019 Oct 07.
Article
em En
| MEDLINE
| ID: mdl-35530761
Formation of precise and high-resolution silica micropatterns on polymer substrates is of importance in surface structuring for flexible device fabrication of optics, microelectronic, and biotechnology. To achieve that, substrates modified with affinity-patterns serve as a strategy for site-selective deposition. In the present paper, vacuum ultraviolet (VUV) treatment is utilized to achieve spatially-controlled surface functionalization on a cyclo-olefin polymer (COP) substrate. An organosilane, 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS), preferentially deposits on the functionalized regions. Well-defined patterns of TMCTS are formed with a minimum feature of â¼500 nm. The secondary VUV/(O)-treatment converts TMCTS into SiO x , meanwhile etches the bare COP surface, forming patterned SiO x /COP microstructures with an average height of â¼150 nm. The resulting SiO x patterns retain a good copy of TMCTS patterns, which are also consistent with the patterns of photomask used in polymer affinity-patterning. The high quality SiO x patterns are of interests in microdevice fabrication, and the hydrophilicity contrast and adjustable heights reveal their potential application as a "stamp" for microcontact printing (µCP) techniques.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article