Your browser doesn't support javascript.
loading
MWCNTs Composites-Based on New Chemically Modified Polysulfone Matrix for Biomedical Applications.
Nica, Simona Luminita; Zaltariov, Mirela-Fernanda; Pamfil, Daniela; Bargan, Alexandra; Rusu, Daniela; Rata, Delia Mihaela; Gaina, Constantin; Atanase, Leonard Ionut.
Afiliação
  • Nica SL; Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
  • Zaltariov MF; Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
  • Pamfil D; Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
  • Bargan A; Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
  • Rusu D; Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
  • Rata DM; Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania.
  • Gaina C; Petru Poni Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania.
  • Atanase LI; Faculty of Medical Dentistry, Apollonia University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania.
Nanomaterials (Basel) ; 12(9)2022 Apr 28.
Article em En | MEDLINE | ID: mdl-35564211
ABSTRACT
Polyvinyl alcohol (PVA) is a non-toxic biosynthetic polymer. Due to the hydrophilic properties of the PVA, its utilization is an easy tool to modify the properties of materials inducing increased hydrophilicity, which can be noticed in the surface properties of the materials, such as wettability. Based on this motivation, we proposed to obtain high-performance composite materials by a facile synthetic method that involves the cross-linking process of polyvinyl alcohol (PVA) with and aldehyde-functionalized polysulfone(mPSF) precursor, prior to incorporation of modified MWCNTs with hydrophilic groups, thus ensuring a high compatibility between the polymeric and the filler components. Materials prepared in this way have been compared with those based on polyvinyl alcohol and same fillers (mMWCNTs) in order to establish the influence of the polymeric matrix on the composites properties. The amount of mMWCNTs varied in both polymeric matrices between 0.5 and 5 wt%. Fourier transformed infrared with attenuated total reflectance spectroscopy (FTIR-ATR) was employed to confirm the changes noted in the PVA, mPSF and their composites. Hemolysis degree was investigated in correlation with the material structural features. Homogenous distribution of mMWCNTs in all the composite materials has been confirmed by scanning electron microscopy. The hydrophilicity of both composite systems, estimated by the contact angle method, was influenced by the presence of the filler amount mMWCNTs in both matrices (PVA and mPSF). Our work demonstrates that mPSF/mMWCNTs and PVA/mMWCNTs composite could be used as water purification or blood-filtration materials.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article