Your browser doesn't support javascript.
loading
Genetic deletion of the glucocorticoid receptor in Cx3cr1+ myeloid cells is neuroprotective and improves motor recovery after spinal cord injury.
Madalena, Kathryn M; Brennan, Faith H; Popovich, Phillip G.
Afiliação
  • Madalena KM; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
  • Brennan FH; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
  • Popovich PG; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA. Electronic address: phillip.popovich@osumc.edu.
Exp Neurol ; 355: 114114, 2022 09.
Article em En | MEDLINE | ID: mdl-35568187
Glucocorticoid receptors (GRs), part of the nuclear receptor superfamily of transcription factors (TFs), are ubiquitously expressed in all cell types and regulate cellular responses to glucocorticoids (e.g., cortisol in humans; corticosterone in rodents). In myeloid cells, glucocorticoids binding to GRs can enhance or repress gene transcription, thereby imparting distinct and context-dependent functions in macrophages at sites of inflammation. In experimental models and in humans, glucocorticoids are widely used as anti-inflammatory treatments to promote recovery of function after SCI. Thus, we predicted that deleting GR in mouse myeloid lineage cells (i.e., microglia and monocyte-derived macrophages) would enhance inflammation at the site of injury and worsen functional recovery after traumatic spinal cord injury (SCI). Contrary to our prediction, the intraspinal macrophage response to a moderate (75 kdyne) spinal contusion SCI was reduced in Cx3cr1-Cre;GRf/f conditional knockout mice (with GR specifically deleted in myeloid cells). This phenotype was associated with improvements in hindlimb motor recovery, myelin sparing, axon sparing/regeneration, and microvascular protection/plasticity relative to SCI mice with normal myeloid cell GR expression. Further analysis revealed that macrophage GR deletion impaired lipid and myelin phagocytosis and foamy macrophage formation. Together, these data reveal endogenous GR signaling as a key pathway that normally inhibits mechanisms of macrophage-mediated repair after SCI.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismos da Medula Espinal / Receptores de Glucocorticoides Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismos da Medula Espinal / Receptores de Glucocorticoides Idioma: En Ano de publicação: 2022 Tipo de documento: Article