Your browser doesn't support javascript.
loading
An Er3+ doped Ba2MgWO6 double perovskite: a phosphor for low-temperature thermometry.
Vu, T H Q; Bondzior, B; Stefanska, D; Deren, P J.
Afiliação
  • Vu THQ; Wlodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland. p.deren@intibs.pl.
  • Bondzior B; Wlodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland. p.deren@intibs.pl.
  • Stefanska D; Wlodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland. p.deren@intibs.pl.
  • Deren PJ; Wlodzimierz Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland. p.deren@intibs.pl.
Dalton Trans ; 51(20): 8056-8065, 2022 May 24.
Article em En | MEDLINE | ID: mdl-35575033
ABSTRACT
A bifunctional luminescent material is one of the most intriguing topics in recent years with significant growth in the number of investigations. Herein, we report the potential of Ba2MgWO6 doped with Er3+ as a candidate for white-light emitting phosphor and noncontact luminescent thermometry. The synthesis of the samples was carried out by the co-precipitation method. The influence of the dopant concentration on the emission intensity, as well as the capability of temperature readout, was investigated for the first time. The highest emission intensity exhibits a sample comprising 4% Er3+; above it, the concentration quenching process by the dipole-dipole interaction occurs. However, high quality white light generates Ba2MgWO6 with 0.5% of Er3+ due to the coexistence of the host and erbium ion emission with a CIE of (0.30, 0.35). To construct a non-contact luminescent thermometer based on Er3+, the ratio of the emission from 4I11/2 → 4I15/2 to the host emission was examined. The highest sensitivity Sr of the obtained luminescent thermometers was 2.78% K-1 at 198 K. The repeatability of the calculated results and the uncertainty δT of the temperature readout were investigated.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article