Your browser doesn't support javascript.
loading
Recent developments in first-row transition metal complex-catalyzed CO2 hydrogenation.
Das, Chandan; Grover, Jagrit; Das, Ayon; Maiti, Debabrata; Dutta, Arnab; Lahiri, Goutam Kumar.
Afiliação
  • Das C; Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. lahiri@chem.iib.ac.in.
  • Grover J; Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. lahiri@chem.iib.ac.in.
  • Tannu; Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. lahiri@chem.iib.ac.in.
  • Das A; Interdisciplinary Programme Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
  • Maiti D; Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. lahiri@chem.iib.ac.in.
  • Dutta A; Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. lahiri@chem.iib.ac.in.
  • Lahiri GK; Interdisciplinary Programme Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
Dalton Trans ; 51(21): 8160-8168, 2022 May 31.
Article em En | MEDLINE | ID: mdl-35587113
ABSTRACT
Our modern civilization is currently standing at a crossroads due to excessive emission of anthropogenic CO2 leading to adverse climate change effects. Hence, a proper CO2 management strategy, including appropriate CO2 capture, utilization, and storage (CCUS), has become a prime concern globally. On the other hand, C1 chemicals such as methanol (CH3OH) and formic acid (HCOOH) have emerged as leading materials for a wide range of applications in various industries, including chemical, biochemical, pharmaceutical, agrochemical, and even energy sectors. Hence, there is a concerted effort to bridge the gap between CO2 management and methanol/formic acid production by employing CO2 as a C1-synthon. CO2 hydrogenation to methanol and formic acid has emerged as one of the primary routes for directly converting CO2 to a copious amount of methanol and formate, which is typically catalyzed by transition metal complexes. In this frontier article, we have primarily discussed the abundant first-row transition metal-driven hydrogenation reaction that has exhibited a significant surge in activity over the past few years. We have also highlighted the potential future direction of the research while incorporating a comparative analysis for the competitive second and third-row transition metal-based hydrogenation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Elementos de Transição / Complexos de Coordenação Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Elementos de Transição / Complexos de Coordenação Idioma: En Ano de publicação: 2022 Tipo de documento: Article