Your browser doesn't support javascript.
loading
SOC Estimation of Lithium-Ion Battery for Electric Vehicle Based on Deep Multilayer Perceptron.
Li, Xueguang; Jiang, Haizhou; Guo, Sufen; Xu, Jingxiu; Li, Meiyan; Liu, Xiaoyan; Zhang, Xusong.
Afiliação
  • Li X; China Research Institute of Radiowave Propagation, Xinxiang, Henan Province 453000, China.
  • Jiang H; China Research Institute of Radiowave Propagation, Xinxiang, Henan Province 453000, China.
  • Guo S; School of Fine Arts, Xinxiang University, Xinxiang, Henan Province 453000, China.
  • Xu J; School of Computer, Huanggang Normal University, Huangang, Hubei Province, China.
  • Li M; School of Information Engineering, Baise University, Baise, Guangxi Province 533000, China.
  • Liu X; Department of Virtual Reality, Jiangxi Tellhow Animation Vocational College, Jiangxi Province 330200, China.
  • Zhang X; Guizhou Coalfield Geology Bureau, Guiyang, Guizhou Province 550000, China.
Comput Intell Neurosci ; 2022: 3920317, 2022.
Article em En | MEDLINE | ID: mdl-35615546
The state of charge (SOC) is one of the main indexes of the lithium-ion battery, which affects the practice range of new energy vehicles and the safety of the battery. Nevertheless, the value of SOC cannot be measured directly. At present, the algorithm for estimating the state of charge is not very satisfactory. The multilayer perceptron algorithm designed during this paper encompasses a sensible impact on state estimation. During this paper, the multilayer network is designed to estimate the charged state of lithium batteries from the three-layer artificial neural network to the eleven-layer artificial neural network. After preprocessing the dataset and comparing several activation functions, the ten-layer fully connected neural network is the most efficient to estimate the SOC. In order to prevent over-fitting of the multilayer perceptron algorithm, the two techniques of the BatchNormalization layer and Dropout layer work together to inhibit over-fitting. At the same time, the accuracy of extended Kalman filter, long and short memory network, and recurrent neural network are compared. The multilayer perceptron network designed during this paper has the highest accuracy. Finally, in the open dataset, both the training and test errors achieve good results. The algorithm developed in this paper has made some progress in SOC estimation.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article