Your browser doesn't support javascript.
loading
Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour.
Marzal, Alfonso; Magallanes, Sergio; Garcia-Longoria, Luz.
Afiliação
  • Marzal A; Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain.
  • Magallanes S; Grupo de Investigación y Sostenibilidad Ambiental, Universidad Nacional Federico Villarreal, Lima 15007, Peru.
  • Garcia-Longoria L; Department of Wetland Ecology, Biological Station (EBD-CSIC), Avda, Américo Vespucio 26, 41092 Sevilla, Spain.
Biology (Basel) ; 11(5)2022 May 09.
Article em En | MEDLINE | ID: mdl-35625454
ABSTRACT
Vector-borne infectious diseases (e.g., malaria, dengue fever, and yellow fever) result from a parasite transmitted to humans and other animals by blood-feeding arthropods. They are major contributors to the global disease burden, as they account for nearly a fifth of all infectious diseases worldwide. The interaction between vectors and their hosts plays a key role driving vector-borne disease transmission. Therefore, identifying factors governing host selection by blood-feeding insects is essential to understand the transmission dynamics of vector-borne diseases. Here, we review published information on the physical and chemical stimuli (acoustic, visual, olfactory, moisture and thermal cues) used by mosquitoes and other haemosporidian vectors to detect their vertebrate hosts. We mainly focus on studies on avian malaria and related haemosporidian parasites since this animal model has historically provided important advances in our understanding on ecological and evolutionary process ruling vector-borne disease dynamics and transmission. We also present relevant studies analysing the capacity of feather and skin symbiotic bacteria in the production of volatile compounds with vector attractant properties. Furthermore, we review the role of uropygial secretions and symbiotic bacteria in bird-insect vector interactions. In addition, we present investigations examining the alterations induced by haemosporidian parasites on their arthropod vector and vertebrate host to enhance parasite transmission. Finally, we propose future lines of research for designing successful vector control strategies and for infectious disease management.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article