Your browser doesn't support javascript.
loading
Transformation and fate of non-reactive phosphorus (NRP) in enhanced biological phosphorus removal process with sidestream phosphorus recovery.
Li, Xiang; Shen, Shuting; Xu, Yuye; Guo, Ting; Hongliang, Dai; Lu, Xiwu.
Afiliação
  • Li X; Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China. Electronic address: lixiangseu@seu.edu.cn.
  • Shen S; Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China.
  • Xu Y; Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China.
  • Guo T; Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China.
  • Hongliang D; Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, China. Electronic address: daihongliang@just.edu.cn.
  • Lu X; Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, China. Electronic address: 101002241@seu.edu.cn.
Sci Total Environ ; 839: 156275, 2022 Sep 15.
Article em En | MEDLINE | ID: mdl-35644401
ABSTRACT
Recovery of phosphorus (P) from wastewater can help establish a new P cycle. However, there are many P forms in wastewater, not always in reactive forms, which are the most suitable for direct recovery. The enhanced biological phosphorus removal process with sidestream phosphorus recovery (EBPR-SPR) is an effective way to remove and recover P resources in wastewater, but there is a lack of research on the transformation and fate of non-reactive phosphorus (NRP) in it. This study selected four model NRP to investigate their transformation and fate in an EBPR-SPR process. The transformation of NRP in pure water and activated sludge under anaerobic and aerobic conditions were compared. The effects of Ca/P ratio and pH on NRP recovery were studied, and the recovery products of NRP were characterized. It was found that NRP containing phosphoanhydride and phosphoester bonds were more easily hydrolyzed to reactive P (RP) than that containing PC bonds. NRP will be adsorbed and accumulated by activated sludge, and activated sludge will accelerate the conversion of NRP to RP. Tripolyphosphate can form complex precipitation with Ca2+. When multiform P co-existed, Ca2+ preferably complexed with polyphosphate, which harmed RP recovery. The conversion of NRP should be strengthened to recover more P in wastewater. The effect of NRP should be considered when recovering P from wastewater.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Esgotos Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fósforo / Esgotos Idioma: En Ano de publicação: 2022 Tipo de documento: Article